Chesapeake Bay Bridge Reconstruction Advisory Group (BBRAG)

Traffic Background Resources

Data

Dutu			
Data on pre-pandemic	Data and information for all three of these requests can be found in the BCS DEIS;		
traffic, complete enough	most specifically the Traffic Technical Report which contains data as well as		
to reveal peak usage by	analysis. (<u>https://www.baycrossingstudy.com/tier-1-deis/deis#technical-reports</u>)		
season, day of week,			
and time of day	Previous BBRAG presentations on various traffic topics		
Information on what	(https://mdta.maryland.gov/Meeting Schedules/BBRAG Meeting Schedule.html)		
the maximum vehicle			
throughput is on the	The 2020 Electric Ferry study also contains traffic and demand information		
bridge in each direction,	(http://dlslibrary.state.md.us/publications/JCR/2019/2019/86-87.pdf)		
and how it depends on			
relevant known factors			
Data on what the			
consequences of peaks			
at various levels are, for			
example backup lengths			
in distance and time,			
accident rates, overflow			
into neighborhoods, etc.			
· · · · · · · · · · · · · · · · · · ·			

Travel Demand Curve

Information on what steps have	MDTA makes a concerted effort to encourage users to travel at off-peak	
already been implemented to	periods. (<u>https://baybridge.maryland.gov/best-times-to-travel</u>) and	
flatten the demand curve, for	releases regular travel advisories regarding anticipated changes to	
example by persuading beach	conditions(<u>https://baybridge.maryland.gov/blog-category/bay-bridge-</u>	
resorts to spread out rental unit	traffic-advisories)	
turnover days, etc.		

Congestion Pricing

Information on a got	MDTA have see dusted surgery investigations in the next for internal
Information on past	MDTA have conducted cursory investigations in the past for internal
studies/experiments on the results	reference purposes. These investigations were not released to the public
of varying price to modulate	as they did not fulfil the comprehensive scope the topic requires.
demand on the bridge	

Results from other jurisdictions/bridges/highways that have employed price to modulate demand, to serve as examples informing our analysis of options that might be considered for the Chesapeake Bay Bridge.

Dynamic tolling (i.e. congestion pricing) is in use throughout the world but there are very few examples on bridges and especially bridges comparable to the Bay Bridge. Most US examples are express toll lanes, and most foreign examples are also express toll lanes or urban congestion zones. Both concepts implement congestion pricing as a means of either charging for faster travel times or encouraging travelers to choose an alternative route or mode of travel. Neither concept is implemented in any location with the goal of reducing overall demand. Below are some resources on the topic:

- Federal Highway Administration (FHWA) website on congestion pricing: <u>https://ops.fhwa.dot.gov/congestionpricing/</u>
- Virginia I-66 Express Tolls Lanes: <u>http://www.66expresslanes.org/about_the_lanes/documents.asp</u>