

STREAM MITIGATION DESIGN REPORT

I-95 ETL NORTHBOUND EXTENSION PHASE II – LILLY RUN STREAM RESTORATION

Harford County, MD

Submitted to: Maryland Transportation Authority U.S. Army Corps of Engineers Maryland Department of the Environment October 2019

Table of Contents

1.	Introduction	
2.	Site Description	
3.	Site Selection Criteria	5
4.	Site Protection Instruments	6
5.	Physiographic Region, Surface Geology and Watershed Characteristics	6
6.	Existing Channel Conditions Visual Assessment	7
7.	Watershed Hydrology Study	17
8.	Baseline Information and Existing Conditions Geomorphology Data	
9.	Restoration and Uplift Opportunity	
0	1 Liverslam.	22
	.1 Hydrology	
	2 Hydraulics	
	3 Geomorphology	
	.4 Physicochemical .5 Biology	
	.6 Stream Stability and Habitat Assessment Sheets	
9.	o Stream Stability and Habitat Assessment Sheets	
10.	Hydraulic Computations and Analysis	
11.	Credit Determination Methodology	
12.	Restoration Design Discussion and Mitigation Work Plan	
13.	Maintenance Plan	
14.	Monitoring Requirements and Performance Standards	
15.	Long-Term Management Plan	
16.	Financial Assurances	
17.	References	

Appendices

A. Hydrology Mapping and Computations

- Drainage Area Maps (Existing Conditions)
- WinTR-20 Output

B. Site Assessment Mapping

C. Existing Channel Geomorphic Data

- Lilly Run Section and Profiles
- Existing Conditions Pebble Count

D. Ecological Uplift Data

- Pfankuch Channel Stability Forms
- BEHI / NBS Geomorphic Data
- Habitat Assessment Field Data Sheets

E. Design Computations

- Proposed Floodplain Computations
- o Proposed Channel Computations
- o Sediment Analysis Data
- Scour Hole Computations

F. Design Plans (under separate cover)

1. INTRODUCTION

The Maryland Transportation Authority (MDTA) is proposing to construct mitigation along Lilly Run Phases 2 through 4 as mitigation for the I-95 Express Toll Lanes (ETL) Northbound Extension Phase II Project. On behalf of the Maryland Transportation Authority (MDTA), Johnson, Mirmiran & Thompson (JMT) has completed this Design Report to discuss the design of Lilly Run that is to be used as compensatory mitigation for the-above mentioned projects. MDTA proposed that a mitigation credit ratio of 1:1 be utilized for the stream site, as the impacted first and zero order streams match closely in function and value with those proposed to be restored. See Table 1 below for calculation of proposed stream mitigation credits:

Table 1: Proposed Stream Mitigation Credit Calculation

Mitigation Sites	Proposed Restored Stream Length	Proposed Mitigation Credit Ratio	Proposed Stream Mitigation Credits
Lilly Run	2067 LF Perennial	1:1	2067 LF Perennial
Totals	2067 LF	-	2067 LF

*Values shown above approximate for Reaches 1-6. Finalized values will be provided in future submittals.

This report has been prepared in accordance with the *Maryland Compensatory Mitigation Guidance* (Interagency Mitigation Task Force (IMTF), 1994) and the *Compensatory Mitigation for Losses of Aquatic Resources; Final Rule* date April 10, 2008. This report will document and address the twelve elements required for mitigation plans per the Final Rule which include the following:

- Objectives
- Site Selection Criteria
- Site Protection Instruments
- Baseline Information
- Credit Determination Methodology
- Mitigation Work Plan
- Maintenance Plan
- Ecological Performance Standards
- Monitoring Requirements
- Long-Term Management Plan
- Adaptive Management Plan
- Financial Assurances

The following sections of the report will address all these elements as well as expand upon the existing conditions of the sites and proposed designs.

2. SITE DESCRIPTION

The following sections provide a brief site description for the location of Lilly Run. **Figure 1** below shows the location of the site.

Lilly Run is a perennial stream located southeast of I-95, within the Lower Susquehanna River watershed. The watershed is highly urbanized with a combination of impervious roadways, a railway, residential areas and industrial areas draining directly to the site.

The project site is divided into 4 reaches along Lilly Run and its unnamed tributaries. All reaches will be restored as a part of the Phase II mitigation package. Reach 1 is the most upstream reach of the project site and starts at the downstream end of the culvert that flows beneath Revolution St. Reach 2 is just downstream of Fountain St where Lilly Run is currently piped. Reach 3 is an unnamed tributary that starts at an outfall adjacent to S Juniata St. Reach 4 is the downstream most portion of Lilly Run for the project site and ends just upstream of the Amtrak train tracks. In general, the site is highly urbanized with straightened channels, erosive banks and a disconnected floodplain causing extreme flooding. More detailed information of the conditions of the site can be seen in the *Existing Channel Conditions Visual Assessment* Section.

Figure 1: Lilly Run mitigation reach map

3. SITE SELECTION CRITERIA

A mitigation search was originally conducted for the Section 200 ultimate build-out using GIS, aerial imagery and field reviews. MDTA also coordinated with multiple agencies for aid in identification of existing opportunities, field reconnaissance, and assessment of sites; those agencies include USACE, MDE, the Environmental Protection Agency (EPA), the US Department of Agriculture and the Harford County Department of Planning and Public Works. USACE identified the Lilly Run stream restoration site during the I-95 ETL Phase I mitigation site search; the first phase of the four-phase mitigation project initially planned by the City of Havre de Grace will be completed as part of the I-95 ETL Northbound Extension Phase I mitigation. All our phases of Lilly Run are high priority for the City of Havre de Grace, due to ongoing flooding concerns; therefore, the remaining phases of Lilly Run were selected to be part of the Phase II mitigation package.

4. SITE PROTECTION INSTRUMENTS

The proposed mitigation site will be protected through a Memorandum of Agreement between MDTA and the City of Havre de Grace. The draft Memorandum of Agreement will be provided when available, with the final document provided no later than one year after completion of construction.

5. PHYSIOGRAPHIC REGION, SURFACE GEOLOGY AND WATERSHED CHARACTERISTICS

Lilly Run is a tributary to the Susquehanna River and is located within the Lower Susquehanna River watershed (02-12-02-01) and is classified as a Use I waterway. The drainage area to the downstream end of the project site is approximately 939.61 acres. Lilly Run is not listed on the Maryland 303(d) lists of impaired waters. However, the downstream receiving waters of the Susquehanna River are listed on the 303(d) list of impaired waters. In addition, the downstream receiving waters of the tributary to Susquehanna River are listed for various impairments including Nitrogen and Phosphorus (Total). The downstream Susquehanna River is listed for additional impairments including Cadmium, Mercury, PCBs, and TSS.

Lilly Run is located within the Aberdeen Estuaries and Lowlands District of the Atlantic Coastal Plain Province. The landform description associated with this area is characterized as a relatively featureless lowland. As for the geologic structure of the project site, this region is essentially flat-lying sedimentary beds. The drainage pattern is dendritic (estuarine).

The surface soils within the stream restoration corridors mainly include Hatboro-Codorus complex, 0 to 3 percent slopes, frequently flooded (HcA) and Othello Silt Loams, 0 to 2 percent slopes, northern coastal plain (Ot). These soils are classified as very deep and poorly drained soils. The Hatboro-Codorus complex was formed in alluvium derived from greenstone and/or phyllite and/or quartzite and/or schist rock located in floodplain. The Othello Silt Loams was formed in silty eolian deposits over fluviomarine deposits. These are considered to be hydric soils that, according to the definition created by The National Technical Committee for Hydric Soils (NTCHS), are soils formed under conditions of saturation, flooding or ponding long enough during the growing season to develop anaerobic conditions in the upper part.

Lilly Run is located within an urbanized watershed where a significant amount of the waterways upstream of the project site have been piped. These impacts result in flashy and intense discharges through the open stream channel within the project site. In addition, the urbanized areas can negatively impact the water quality and habitat of the project stream reach.

The stream flow within the project site is perennial and driven by rainfall and occasionally by snowmelt. Bankfull flows may occur as a result of a variety of rain events including rain, snow, frontal storm events and tropical storms.

6. EXISTING CHANNEL CONDITIONS VISUAL ASSESSMENT

A visual assessment of Lilly Run's existing channel conditions was performed on April 10, 2019. This visual assessment identified areas most in need of bed and bank improvements, pattern and profile improvements, habitat enhancements, sediment and debris sources, degradation / aggradation areas, and localized impacts throughout the stream corridor that may influence long-term stability of design options.

The visual assessment of the project site has been separated into four stream reaches. These areas can be seen in the site assessment map located in **Figure 1** above and **Appendix B**:

- Reach 1: Main Stem from Revolution Street to Fountain Street.
- **Reach 2:** Main Stem piped section under soccer fields to be daylighted.
- Reach 3: Unnamed tributary from Juniata Street to Main Stem.
- Reach 4: Main Stem from pedestrian bridge to Amtrak train tracks.

6.1 REACH 1

Reach 1 begins at Revolution St culvert and flows approximately 880-feet downstream to Fountain St culvert (**Figure 2**). Reach 1 is confined within an approximately 75-foot-wide grassed area with development on either side. This area of the project site includes existing conditions survey of one cross section, one pebble count, and one longitudinal profile. This section of the main stem is straightened with little to no sinuosity and nearly vertical stream banks reaching 4-feet in height. Reach 1 is confined between 14-foot-wide old railroad tie walls which serve as the stream banks on various stretches of the reach. There is soil stabilization netting found in the channel bottom suggesting the stream has been improved before. Some fish were found in this reach however they were frequently stuck in the existing matting. There was no in-channel habitat for them either. The vegetation of the reach consists of grasses along the stream banks with moderate to high bank erosion and no overhead cover. Aggradation of sediment was found throughout the reach, ultimately leading to the sediment buildup at the Fountain St culvert. The outfall location and inverts of existing outfalls will need to be incorporated in concurrence with the stream restoration design. See **Photos 1-3** for visual of Reach 1.

Figure 2: Reach 1 map. Channel is fairly straight and confined between parallel 14-foot-wide railroad tie walls.

Photo 1: Looking upstream at Revolution Street Culvert. Note vertical railroad tie walls on left and right side.

Photo 2: Middle section of reach. Note straight channel with no cover or in-channel habitat.

Photo 3: Looking downstream at Fountain Street culvert

6.2 REACH 2

Reach 2 starts at Fountain Street culvert and is piped through a 42" x 72" CMP and ties into the main stem approximately 355-feet downstream (**Figure 3**). The opening of the CMP is approximately halfway filled with sediment (see **Photos 4** and **5**) greatly reducing its conveyance. The pipe runs below existing sports fields and daylighting the stream to an open channel is of great interest. The invert and outfall locations of the CMP will need to be incorporated in concurrence with the stream restoration design.

Figure 3: Map of Reach 2. Note system is within enclosed 42" x 72" CMP under sports field.

Photo 4: Looking upstream at Fountain Street from 42" x 72" Reach 2 CMP

Photo 5: Looking downstream at 42" x 72" Reach 2 CMP. Note CMP is halfway filled with deposits.

6.3 REACH 3

Reach 3 begins is from the N Juniata Street 24" x 42" CMP outfall to its confluence with the main stem (**Figure 4**). The N Juniata Street CMP outfalls into a 2-foot-wide channel in an open grass area (**Photo 6**). It flows through a constriction between the existing basketball and tennis courts and then opens back up. The unnamed tributary flows under a pedestrian bridge and ties into the main stem of Lilly Run about 450 feet downstream from the culvert outfall.

Existing conditions survey by JMT included one cross section, one pebble count, and one longitudinal profile within this reach. Reach 3 is a straight channel with little to no sinuosity. Bank erosion and channel degradation are not prevalent though the upstream portion. The stream banks are approximately 1-foot high with minor vegetation including grasses and trees located adjacent to the channel (**Photo 7**). Downstream of the pedestrian bridge the stream banks become approximately 3-feet high with more dense vegetation, less grasses and moderate bank erosion (**Photo 8**).

Figure 4: Map of Reach 3.

Photo 6: Unnamed tributary south of existing parking lot between existing tennis and basketball courts adjacent to S Juniata St. Note pipe outfalls into 2' wide channel in open grassy area.

Photo 7: Unnamed tributary middle section with 1' high banks and minor vegetation including grasses and trees.

Photo 8: Unnamed tributary downstream of pedestrian bridge. Stream banks are 3' high with more dense vegetation and moderate bank erosion.

6.4 REACH 4

Reach 4 begins downstream of the limits of Reach 3 at a pedestrian bridge and continues 860 feet downstream to an existing culvert that runs under the Amtrak railway (**Figure 5**). Existing conditions survey by JMT included one cross section, one pebble count, and one longitudinal profile. This reach is constricted on its right bank due to the stadium structures and sports fields on the left bank. The available floodplain varies from 55' to 65' within Reach 4. The stream channel is straightened with very minor sinuosity. The stream banks range from 2 to 6-feet with moderate bank erosion. The vegetative cover is primarily grasses and shrubs which line the stream and dominates most of the left bank. There are very few trees located along the reach. The stream lined shrubs are at risk for creating undercut banks or falling into the stream as streambanks continue to erode. The outfall location and inverts of said outfalls will need to be incorporated in concurrence with the stream restoration design. See **Photos 9-12** for more details.

Figure 5: Map of Reach 4 confined next to stadium

Photo 9: Looking downstream at most downstream section of reach at Amtrak rail.

Photo 10: Looking upstream. Note stadium's foundation limiting right bank floodplain.

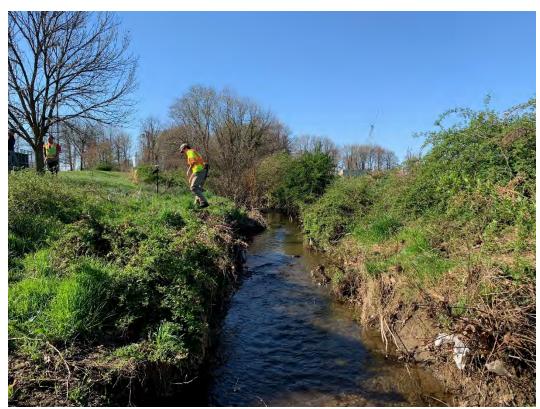


Photo 11: Looking upstream at middle section of reach. Stream is fairly straight, banks are vertical.

Photo 12: Looking downstream from upper portion of reach.

7. WATERSHED HYDROLOGY STUDY

In order to determine peak discharge rates for this project, a hydrologic analysis was performed using GISHydro2000. Due to the highly developed nature of the project site, the existing and ultimate conditions were assumed to have the same land use boundaries; Therefore, the drainage area values that were generated from GISHydro2000, such as curve number and time of concentration, were used for computing discharge values.

The overall peak discharge rate was determined for the key Points of Investigations (POIs) throughout the project site. GISHydro2000 provided an output of discharges using the TR20 method and the Fixed Region equation. The Fixed Region equation discharges were chosen to represent the drainage area of Lilly run because the TR-20 output has not been calibrated for this submission; This makes the Fixed Region discharges the most conservative values to use for our proposed design. The TR-20 output should be calibrated in future submittals to meet the requirements of the discharge value expectations per the *Introduction to GISHydro2000 Training Manual, November 2007.* This expectation, per the training manual is as follows: "Calibration of TR-20 is expected for the [Fixed Region Regression Equation] between the best estimate and the best estimate plus one standard deviation," (Moglen, 24). In future submittals, the TR-20 calibration in GISHydro2000 will allow for determining acceptable discharge values computed using WinTR-20. The GISHydro2000 output of discharges using the TR20 method and the Fixed Region equation can be found in Appendix A. The location of the three (3) POIs, which are discussed in further

detail below, along with soil type, time of concentration (Tc) paths and land use boundaries, are shown on the Drainage Area Map provided in Appendix A.

Three (3) POIs were used to analyze the drainage areas to the ultimate project outfall of Lilly Run. POI-1 is located at the downstream end of Reach 1 at the Fountain St. culvert. POI-2 is located at the upstream end of Reach 3 at the 24" x 42" CMP outfall that flows underneath N Juniata St. POI-3 is located at the downstream end of Reach 4 at the ultimate outfall for our project which is the culvert that flows under the Amtrak Train Tracks. Please see **Table 2** below for the overall drainage area and discharge of the above-mentioned POIs using the Fix Region Equation.

Table 2:	Lilly Run	Drainage	Area a	and	Discharge	Table
----------	-----------	----------	--------	-----	-----------	-------

Drainage Area (acres)	Q2 (cfs)	Q10 (cfs)	Q100 (cfs)
939.61	299	809	2,420

8. BASELINE INFORMATION AND EXISTING CONDITIONS GEOMORPHOLOGY DATA

Geomorphology data was collected at the project site to determine the existing conditions of the site. Exact locations of cross sections, longitudinal profiles, Wolman pebble counts and additional data collected in the field can be seen on the Site Assessment Map located in **Appendix B**. All field data has also been entered into Rivermorph 5.2.0 and data plots can be seen in **Appendix C**.

During our geomorphic field assessment of Lilly Run, three (3) cross sections and three (3) longitudinal profiles were surveyed using laser level equipment to characterize existing channel conditions throughout the project site. The cross sections surveyed (**Photos 13–15**) will serve to represent average existing channel conditions for each respective reach found through the project site. Reach 2, the piped portion of Lilly Run, will be represented by the field assessment data collected at Reach 1. Assumptions and design approaches for Reach 2 can be found in Section 10 of this report.

Photo 13: XS 1 Looking downstream

Photo 14: XS 3 Looking downstream

Photo 15: XS 4 Looking downstream

Pebble counts were conducted on all riffle sections. The representative D30, D50 and D84 sediment sizes are based on the average grain sizes from the three pebble counts conducted. The results of the pebble counts show that the majority of the particles are gravels along with coarse to very coarse sand. The pebble counts are summarized in **Table 3** below:

Size Fraction	XS 1 Pebble Count (100 Particles)	XS 3 Pebble Count (101 Particles)	XS 3 Pebble Count (100 Particles)	Combined Pebble Count
D16	0.25	0.58	1	0.5
D35	1.70	2.56	3.67	2.69
D50	6.85	5.82	8.55	6.91
D84	24.95	28.99	40	29.98

Table 3:	Lilly Run Pebbl	e Count Summary Table
----------	-----------------	-----------------------

9. RESTORATION AND UPLIFT OPPORTUNITY

This section will describe the strategies of proposed design elements to be utilized in the proposed restoration of Lilly Run as outlined in the *Final Draft Function-Based Rapid Stream Assessment Methodology* developed by the U.S. Fish and Wildlife Service (Starr et al. 2015) and the ecological benefits or functional uplift they may provide. The assessment methodology is largely based on the Stream Functions Pyramid as described in *A Function-Based Framework for Stream Assessment and Restoration*

Projects (Harman et al. 2012) (**Figure 6**). The pyramid consists of a hierarchal relationship of five (5) critical categories that evaluate the health and function of a stream.

→ HYDRAULIC »	sreate diverse bed forms and dynamic equilibrium
	\sim
Transport of water in the channel, on the floor HYDROLOGY » Transport of water from the watershed to the channe	odplain, and through sediments

Figure 6: Stream Functions Pyramid (Harman et al., 2012)

The foundation of the proposed design for the Restoration of Lilly Run is based on the supporting premise of the Stream Functions Pyramid, that lower functions of the Pyramid support and form the foundation for higher level functions. If a proposed restoration project cannot or can only partially improve the hydrology, hydraulics and geomorphology, higher chemical and biological functions may only be supported for a brief period or may never become established at all. It is imperative that a successful design first focus on the establishment of the lower functions, before trying to force higher level functions.

The primary objective of the restoration design of Lilly Run, is to first focus on the correct hydrologic, hydraulic and geomorphic functions to establish a self-sustaining valley bottom ecosystem. Streams, wetlands, water, vegetation and wildlife are all critical components of a connected system. Each supports the sustainability of the other and serve as indicators of ecological health. The proposed restoration strategy is well founded upon the watershed assessment, an understanding to causes of current channel instability, and the sediment and geomorphic analyses performed. These studies have been utilized to limit

potential design flaws and provide guidance to the proper channel and floodplain dimensions which will serve to maintain sediment equilibrium of the bedload, enhance the deposition of very fine suspended load materials and maintain long-term stability of a connected ecosystem. The design strategy closely resembles a Rosgen Priority 2 Restoration with the conversion of a F stream type to a less entrenched C channel that aids in moving the channel forward in the evolutionary process.

The design for Reach 1 includes the removal of existing railroad ties along the banks of the existing stream and modifying the existing stream geometry to construct a C-type stream. Due to the lack of available floodplain width, the proposed C-type stream is located along the existing stream channel. The design for Reach 2 includes removing the existing 42" x 72" CMP pipe and constructing a proposed C-type stream to direct the flow. The design for Reach 3 includes a proposed forebay and an adjacent wetland feature to remove pollutants and enhance water quality. The design for Reach 4 includes constructing a proposed C-type stream channel and filling in the existing channel to the same grade as the newly constructed floodplain.

The proposed design focuses on providing water quality improvements, bed load equilibrium, groundwater recharge, hyporheic exchange and improved hydraulic efficiency and function. All of which work together to form the foundation for improved in-channel and riparian ecological and biological functions. The five major categories of the Stream Functions Pyramid are discussed below. Multiple site assessment data sheets can be seen in **Appendix D**.

9.1 HYDROLOGY

Hydrology is primarily driven by land use within the upstream and adjacent watershed to the project site. During large storm or run-off events land use and soil types dictate the amount of water delivered to the project site. Land use also dictates the quality of that water delivered. While little can be done within the project site itself to change upstream watershed conditions, a properly restored valley bottom can greatly improve hydrologic functions during base flow conditions.

Existing Conditions

Upstream of Lilly Run is a highly urbanized watershed that is exposed to large amounts of flow for brief periods of time causing extreme flooding. Like many other urban streams, Lilly Run has become hydrologically disconnected due to excessive alluviation and vertical channel incision. The reaches have been straightened causing a high energy, unstable flow regime.

Proposed Conditions

In the proposed conditions, restoring Lilly Run will create an extensive hyporheic zone throughout the project site valley bottom. This reestablished connection will form the foundation for vital nutrient processing and physiochemical processes. The connection of surface and groundwater will support a diverse native wetland community and robust riparian vegetation. A more sustained groundwater hydrology throughout the valley bottom which includes greater water retention and saturation of soils will help sustain base flow of the channel during dry periods and regulate water temperature year-round.

Reestablishing or creating a dense riparian root system highly connected to groundwater promotes greatly increased sediment and nutrient processing and the protection of both channel banks and the floodplain surface from erosive flows. The reconnection to the water table also allows for the creation of varied hydrologic conditions by manipulating floodplain topography to support diverse wetland communities. Floodplain depressions, old channel bends or oxbows, wet and dry areas, all serve to create a mosaic of flora and fauna. The highly connected and varied floodplain surface will also serve to increase the surface and sub-surface storage of water promoting a rise in the elevation of the local water table or hydraulic head gradients and more sustained base flow of the channel.

9.2 HYDRAULICS

Existing Conditions

Lilly Run is incised in several locations and capable of mobilizing sediments much larger in size than is sustainable within the system. This disruption of the sediment regime creates hydraulic instabilities within the channel which drives both streambank and streambed erosion. Entrenchment ratios are an average of 3.7 for the three reaches, indicating entrenchment. Channelization of Lilly Run through the piping of flows and straightening of the stream have highly altered a stable flood flow regime. Also, as discussed in the Hydrology section above, Lilly Run has become largely hydrologically disconnected due to excessive alluviation and vertical channel incision. The site also has extensive flooding issues due to urbanization, with potential for impacts to infrastructure and the environment by these flood flows.

Proposed Conditions

Hydraulic function of the proposed valley bottom is likely to be improved through the creation of a lower and well-connected floodplain which will serve to reduce channel depth and create a frequent hydraulic connection of bankfull and higher flow events. The lower elevation floodplain will provide a significantly improved interaction between base and flood flows during most routine storm events and remain stable throughout the entire hydrograph with a surface treatment of native vegetation. During much higher storms, flood flows will access the entire existing valley bottom and be oriented in a uniform, down-valley direction. The reduction in bank height and bankfull depth of the proposed channel will result in significant decreases in channel velocities, shear stress and stream power. Introducing a more sinuous system coupled with the creation of a lower floodplain will also aid in decreasing channel velocity. The removal of impermeable soils will promote increased infiltration within the lower floodplain surface. The lower floodplain elevation will greatly increase surface water, groundwater and base flow interaction. Increased floodplain connectivity will result in a design which promotes increased groundwater recharge and increased flood flow attenuation which may result in decreased downstream flood elevations. Despite this improved floodplain connectivity for smaller discharges, it is likely large scale flood event impacts will be relatively unaffected by the design implementation, as urbanization, confinement, and urban structures control the 100-year and larger magnitude flood conditions.

9.3 GEOMORPHOLOGY

Existing Conditions

Lilly Run is capable of mobilizing gravel and even small cobble sized sediments. The source of these sediments is from bed scour and should not be considered part of the sustainable sediment supply. The geomorphic instability has been documented in Section 7. The excessive tractive forces within the incised channel are causing local bed scour and instances of lateral plan form migration as a result. The larger sediments can only be mobilized a short distance and deposit. Once these materials build to an elevation which they can no longer be mobilized by water in the channel, this process forces lateral erosion into the opposing streambanks. The impaired sediment regime has also impaired bed form diversity. In the existing conditions facet sequences primarily consist of pools due to channel straightening and very few riffle sections within the project site area. Several streambanks are vertical and exposed with little to no vegetative protection which creates an unstable scenario.

Proposed Conditions

The proposed design will include the same principals for each reach to promote bed form diversity and creation of a floodplain feature.

Reaches 1 and 4 will replace the existing entrenched F-type channel with a C-type channel of correct form and profile. Reach 4 will also include the creation/restoration of two wetland features adjacent to either side of the proposed channel. Reach 2 will remove the piped stream system to create a C-type channel to connect to the upstream and downstream portions of Lilly Run. Bed form diversity will be restored from a system that includes degrading and aggrading sections of streams, over straightened channels, piped systems or other flow obstructions to an appropriate riffle-pool morphology with integrated stability and habitat features. Proposed riffles will be orientated in a cross-valley direction to shield the channel from valley flood flows. Reach 3 will include the creation/restoration of a wetland feature adjacent to the existing stream channel and improvements at the outfall.

The newly created lower floodplain feature will serve to relieve the excessive tractive forces that have contributed to the lateral and vertical degradation of the existing system. The lower floodplain surface will serve to create a native riparian wetland buffer aggressively planted to create a dense root system. The appropriate composition of the native plantings to a wet hydrologic regime will promote long-term vegetative resistance to maintain the proposed geomorphic form and function of the proposed design.

In order to transport and provide vegetative treatment of finer sediments which may be delivered to the project reach from upstream streambank erosion and maintain a stable equilibrium underlayment within the valley bottom, the proposed channel dimensions must be sized to provide a frequent hydraulic connection to the surrounding floodplain and maintain a low transport condition during bankfull flow events.

The dimensions of the channel are based upon providing stability of the proposed channel bed by importing furnished underlayment. This underlayment will provide an armoring layer or protection of the smaller fine-grained sediments located in the channel and those delivered to the project reach from upstream sources.

Geomorphic functions of the valley bottom through the project site will serve to promote long-term stability through appropriate channel sizing, bed form diversity (riffle/pool features), and sediment transport equilibrium. Grade control structures (both in the channel and in the floodplain) will serve to protect the integrity of the design and provide protection to the level of the 100-year storm. The sediment equilibrium created in the proposed design will promote both long-term vertical and lateral stability.

9.4 PHYSICOCHEMICAL

Physicochemical functions include the interaction of physical and chemical processes to create basic water quality of the stream, as well as facility nutrient and organic carbon processes. Please note that no actual measurements of water quality (i.e. temperature, pH, turbidity, etc.) were taken for this project.

Existing Conditions

Based on observed site conditions, the water quality of Lilly Run through the project reaches appears to be fair to poor. A visual observation of the surrounding land use, riparian cover and detritus in the channel are all observable indicators of fair to poor water quality. The existing channel is highly disturbed by past and recent land use practices and is not geomorphically or hydraulically stable to support indicators of high water quality. An additional concern for water quality within the project site is the fact that most of the runoff entering the project site comes from adjacent impervious areas such as residential and commercial properties that discharge at the upstream end of the site. The runoff has the potential to carry contaminants which could impact the quality of the water. It is recommended that further characterization of the thermal condition of the stream be conducted for the next design phase, to verify restoration potential of these reaches.

Proposed Conditions

In the proposed conditions the channel and floodplain will be hydrologically connected to both surface and groundwater, creating an extensive hyporheic exchange zone which is critical to nutrient processing and microbial processes. This zone forms the foundation for life cycles of both aquatic and riparian life and regulates year-round surface water temperature through groundwater interaction. The frequent connection and expanse of the proposed floodplain area will greatly increase hydrologic residence time and promote nutrient processing. The proposed design will introduce canopy cover to the stream, reducing solar gain and thereby further enhancing water temperature regulation. Riparian tree and wetland herbaceous plantings are a key component of the restoration. Lower summertime water temperatures typically are related to improved dissolved oxygen conditions through reduced aerobic metabolic rates at higher water temperatures. Other indicators of water quality may be improved. pH levels can be balanced, and turbidity reduced through the removal of the overburden of alluvial soils present within the site. These soils typically have a low pH value and their high input into the stream from bank erosion decreases water clarity. Dissolved oxygen levels can also be improved through improved riffle-pool morphology.

The proposed floodplain area will be seeded and planted with numerous native grasses, herbaceous plants, shrub and tree plant species. In the proposed conditions, the channel and floodplain vegetation will be highly connected to groundwater, providing year-round thermal stability. In addition, due to the small

size of the proposed channel, the proposed herbaceous and grass community along the channel will help provide shading. The combination of a restored hyporheic connection and shading of the proposed channel will enhance year-round temperature regulation.

A recent study conducted by Newcomer Johnson et al. 2016, found that more positive results from stream restoration typologies which lower the floodplain, increase sinuosity, and provide both in-stream and oxbow wetlands, increase nutrient retention and decrease nutrient concentrations compared to a pre-restoration or reference condition. Stream and floodplain restoration which provides a significant increase in wetlands with root zones connected to both surface and groundwater may promote increased nitrification and denitrification.

9.5 BIOLOGY

Healthy biological function is result of improvements made in all other functions, but no information could be found on previous biological studies performed in this area and one was not performed as a part of this project. However, the proposed design will connect the longitudinal profile to a surrounding floodplain which should increase stream bottom habitat quality for both macroinvertebrate and finfish communities. Reduction in sediment transport will also be a positive step toward improved benthic habitats which are routinely subjected to excessive fine sediment deposition in the channel from eroding banks within the project reach. Macroinvertebrates, for example, require a temporal stability of stream facet features (specifically, riffles) through the year and for some sensitive species, over several years of their in-stream life stages. More specifically, herpetological habitats are greatly uplifted as compared with an upland condition. Multiple species, including wood turtles, painted turtles, and a variety of salamanders and newts, rely on a symbiosis between the stream and floodplain areas to deposit sediments suitable for nesting, provide hydrology for specific inundation periods for reproduction, and require hydrology throughout the year to provide essential cover and foraging habitats.

The proposed restoration design will create velocities slow enough to deposit significant leaf and woody material into the floodplain, providing substrate for herpetological function. Potential oxbow and slow channel features will provide open water and emergent habitats critical for reproduction and foraging. Isolated oxbows may experience periodic drying in summer months, effectively creating isolated habitats removed from fish predation. Pools will provide potential hibernacula which may remain relatively frost-free due to their connection to groundwater. Sedges, rough grading and other vegetated hummocks will provide basking locations.

Further in-stream habitat improvements are proposed through the extensive use of facet feature variability and imported vegetation. The inclusion of live stakes, live fascines, and vegetation along the banks will likely increase the capture of leaf litter and course organic material for macroinvertebrate processing. These habitat and substrate enhancements will positively benefit fish communities by increasing habitat refugia and food sources for fish and are expected to have significant benefits to young fish. Riparian tree and wetland herbaceous plantings are a key component of the restoration.

Within the proposed floodplain, the reemergence of wetlands is highly anticipated. Frequent saturation of the floodplain surface will greatly deter upland and invasive species from recolonizing the site. The

proposed design may create diverse floodplain topography with lower depressed areas to support several hydrologic zones for nutrient processing and plant diversity. Although the floodplain surface on the proposed design may look flat on paper, a mosaic of micro topography will be created by construction activities, abandoned channel filling and groundwater seepage. The creation of highly variable micro topography throughout the floodplain will support diverse hydrologic conditions. A mosaic of dry, moist and shallow water areas will support a greater diversity of flora and fauna. A dense vegetation root system connected to groundwater greatly increases sediment and nutrient processing (denitrification), evapotranspiration and infiltration.

9.6 STREAM STABILITY AND HABITAT ASSESSMENT SHEETS

The Pfankuch channel stability forms, BEHI / NBS geomorphic data forms and habitat assessment field data sheets have been filled out for all reaches to better assess their impairments and propose an appropriate restoration practice. The BEHI / NBS geomorphic data results represent those of all the reaches combined whereas the Pfankuch channel stability forms and habitat assessment field data sheets have been broken down by reach. Reach 2 was not included in the stream stability and habitat assessment sheets. The forms can be found in **Appendix D** and the results have been summarized below.

The BEHI / NBS geomorphic data forms were completed to estimate the sediment loss from streambank erosion on a yearly basis based on Protocol 1 of *Recommendations of the Expert Panel to Define Removal Rates for individual Stream Restoration Projects* prepared by Tom Schueler and Bill Stack. An assumed bulk density of 2,600 lbs/cy was used for computations as it is a similar value to soils of other sites in the area and no soil data was collected for the site. The computations show that the predicted erosion amount through the project site is 273.1 tons/year. The eroded soils would carry nutrients and suspended sediment with it causing further contamination downstream of this channel. The proposed design will remove the eroded banks and provide a more stable channel that would significantly reduce bank erosion within the project limits.

The Pfankuch channel stability form was used to determine an overall stability rating for the channel's potential stream type. The habitat assessment field data sheets consider ten (10) habitat parameters to help determine an overall score to be used in determining the habitat conditions of the site. The results for each reach can be found below:

Reach 1

The existing stream type of Reach 1 has been determined to be an F4 with the potential to become a C4 when given a proper floodplain to meander through and decreasing bank erosion. As a result of an analysis of the upper banks, lower banks and stream bottom, the grand total of the form was 67. This computes to a good (stable) stability rating. This rating is in line with what was observed in the field since there were both stable and impaired sections of the channel.

The habitat assessment field data analysis showed that only one parameter was labeled as an optimal condition (bank stability) and another as a suboptimal condition (sediment deposition). All other parameters showed either marginal or poor conditions which is in line with what was observed during the visual assessment of the site.

Page 27

Reach 3

The existing stream type of Reach 3 has been determined to be an F4 with the potential to become a C4 when given a proper floodplain to meander through and decreasing bank erosion. As a result of an analysis of the upper banks, lower banks and stream bottom, the grand total of the form was 67. This computes to a good (stable) stability rating. This rating is in line with what was observed in the field since there were both stable and impaired sections of the channel.

The habitat assessment field data analysis showed that only one parameter was labeled as an optimal condition (sediment deposition) and two were labeled as suboptimal conditions (substrate diversity and bank stability). All other parameters showed either marginal or poor conditions which is in line with what was observed during the visual assessment of the site.

Reach 4

The existing stream type of Reach 4 has been determined to be an F4 with the potential to become a C4 when given a proper floodplain to meander through and decreasing bank erosion. As a result of an analysis of the upper banks, lower banks and stream bottom, the grand total of the form was 69. This computes to a good (stable) stability rating. This rating is in line with what was observed in the field since there were both stable and impaired sections of the channel.

The habitat assessment field data analysis showed that only one parameter was labeled as an optimal condition (sediment deposition) and three others were labeled as suboptimal conditions (substrate diversity, bank stability and bank vegetative protection). All other parameters showed either marginal or poor conditions. The results are in line with what was observed during the visual assessment of the site.

10. HYDRAULIC COMPUTATIONS AND ANALYSIS

JMT is proposing to create 2,067 feet of proposed channel within the project site. The basis for the design is to develop the most stable channel dimension, pattern, and profile parameters feasible within the existing constraints of the Lilly Run Stream Restoration area. The proposed design will be split into four (4) reaches to better characterize anticipated flooding conditions within each stream segment. The main stem of Lilly Run is separated into three (3) separate reaches (Reaches 1, 2 and 4), along with one (1) additional tributary (Reach 3). Design computations for the proposed restoration of Reaches 1-4 can be found in **Appendix E** and hydrology information can be found in **Appendix A.** A full hydraulic model analysis is to be performed in future submittals and all computations included in this submittal will need to be confirmed to ensure the feasibility of the proposed design.

The proposed channel design for Reaches 1, 2 and 4 will replace the existing eroding stream banks and will include an easily accessible floodplain. This will provide the reaches with an increased cross-sectional flow area and low elevation energy dissipation during large storm events. The proposed channel and adjacent floodplain are designed to convey the computed discharges up to and including the 100-yr storm event in a stable manner through the project site. Andrew's Methodology was used to determine the

particle sizes required to provide a stable streambed during large storm events. A table summarizing the results discussed below can be seen at the end of this section (**Table 4**).

<u>Reach 1</u>

JMT is proposing a performed scour hole at the existing Revolution St culvert at the upstream end of Reach 1. The scour hole was sized based off the Fountain St culvert at the downstream end of the reach since pipe information for the Revolution St culvert is currently unknown. The scour hole will need to be sized accordingly for future submittals.

A minimum of 1-foot class '0' furnished underlayment along with gravel and smaller substrates is proposed throughout the entire stream profile. Additional riffle grade control is proposed at the downstream end of Reach 1 before the Fountain St culvert. The underlayment has been sized as Class '0' to provide material that can withstand the shear stresses of the 100-year storm discharge. The proposed slope of the valley throughout Reach 1 is 0.437%; this was determined using the elevations of the longitudinal profile collected during the geomorphic survey. The minimum width of the floodplain surface and proposed cut to maintain shear stress levels at 2.0 psf for the 100-year storm event discharge has been calculated as 65-feet. This is being maintained throughout the entirety of the project reach. JMT is proposing to use the maximum amount of floodplain available to reduce shear stress values and promote vegetative growth.

The proposed channel dimensions for this reach includes a total riffle width of 13-feet, an average depth of 1.5-feet, 3:1 side slopes and 2:1 cut slopes at the edges of the floodplain. These dimensions are based on the bankfull characteristics observed and measured in the field at the representative riffle cross section for this Reach.

Reach 2

A Class '0' preformed scour hole is being proposed at the upstream end of Reach 2 at the Fountain St culvert outfall to dissipate energy into the downstream floodplain. JMT is proposing that the currently piped segments of Reach 2 under various sports fields be daylighted in this area and the proposed design tie into the Lilly Run at the current outfall of the existing pipe. The scour hole is proposed to start at the elevation of the existing culvert and extend for a length of 31.5-feet and a width of 28-feet based on the existing size of the culvert. A 2-foot wide cutoff wall is proposed at the end of the scour hole to prevent head cuts / scour from occurring at the start of the channel.

A minimum of 1-foot class '0' furnished underlayment along with gravel and smaller substrates is proposed throughout the entire stream profile. Additional riffle grade control is proposed at the downstream end of Reach 2 before the tie in point to the existing reach downstream. A geomorphic survey was not conducted for Reach 2 as it is currently being piped underground therefore particle size data collected during Reach 1 survey was used for underlayment sizing. The underlayment has been sized as Class '0' to provide material that can withstand the shear stresses of the Reach 1 100-year storm discharge. The proposed slope of the valley throughout Reach 2 is assumed to be 0.50%; due to lack of geomorphic survey data this was determined to be a comparable slope to Reach 1 while tying into the necessary downstream elevation. The minimum width of the floodplain surface and proposed cut to maintain shear stress levels at 2.0 psf for

the 100-year storm event discharge has been calculated as 65-feet. This is being maintained throughout the entirety of the project reach. JMT is proposing to use the maximum amount of floodplain available to reduce shear stress values and promote vegetative growth.

The proposed channel dimensions for this reach includes a total riffle width of 10-feet, an average depth of 1-foot, 3:1 side slopes and 2:1 cut slopes at the edges of the floodplain. These dimensions are based on the bankfull characteristics observed and measured in the field at the representative riffle cross section for Reach 1.

Reach 3

A forebay is proposed at the Juniata St culvert outfall at Reach 3 to dissipate energy and improve water quality coming from the upstream urban watershed by trapping sediment and debris. The forebay was sized using the same methodology as the scour hole at Reach 2, based on the size of the culvert outfall. Starting at the invert of the culvert, the forebay will be comprised of Class '0' material, extending 18-feet long and 16-feet wide. A wetland feature has been proposed to the left of the existing stream channel in order to capture excess runoff and promote water quality. The wetland feature will capture a small amount of runoff including the adjacent basketball courts. It will also capture overflow from the stream channel during large storm events. The wetland feature will not be accounted for wetland creation/restoration credit but will enhance the water quality of the receiving wetland area created at Reach 4. No stream channel improvements are proposed for Reach 3.

Reach 4

A minimum of 1-foot class '0' furnished underlayment along with gravel and smaller substrates is proposed throughout the entire stream profile. Additional riffle grade control is proposed at the upstream and downstream tie in points for Reach 4. The upstream tie-in is located 40-feet downstream of the pedestrian bridge-and the downstream point is just before the Amtrak train tracks. The underlayment has been sized as Class '0' to provide material that can withstand the shear stresses of the 100-year storm discharge. The proposed slope of the valley throughout Reach 4 is 0.75%; this was determined using the elevations of the longitudinal profile collected during the geomorphic survey. The minimum width of the floodplain surface and proposed cut to maintain shear stress levels at 2.0 psf for the 100-year storm event discharge has been calculated as 50-feet. This is being maintained throughout the entirety of the project reach. JMT is proposing to use the maximum amount of floodplain available to reduce shear stress values and promote vegetative growth. The proposed design will be located to the west of the existing stream location as to avoid impacts to the stadium structures.

The proposed channel dimensions for this reach includes a total riffle width of 11-feet, an average depth of 1-foot, 3:1 side slopes and 2:1 cut slopes at the edges of the floodplain. These dimensions are based on the bankfull characteristics observed and measured in the field at the representative riffle cross section for this Reach.

Two (2) wetland features have been proposed to the left and right of the proposed stream channel in order to capture excess runoff and promote water quality.

	Reach 1	Reach 2	Reach 4
Design Discharge (cfs)*	2,420	2,420	2,420
Slope	0.437%	0.50%	0.75%
Proposed Floodplain Width (ft)**	65	65	50
S	NALYSIS		
Boundary Shear Stress (psf)**	0.24	0.19	0.30
D ₅₀ = Existing Mean Riffle Bed Material Size based on measured data (mm)	6.85	6.85	8.55
D₅₀ = Required Mean Riffle Bed Material Size based on Boundary Shear Stress (mm)***	19	19	24
D ₅₀ = Proposed Mean Riffle Bed Material Size (mm)***	152	152	152

Table 4: Hydraulic Computations Summary Table

*100-year discharge (see **Appendix A**)

**Computed using Rivermorph (see Appendix E)

***Based on Andrew's Methodology (see **Appendix E**)

11. CREDIT DETERMINATION METHODOLOGY

USACE and MDE confirmed that 1 LF credit is required per 1 LF of stream impacted (1:1) due to the lowquality nature of the streams to be impacted. Lilly Run is one of the sites being used to fulfill mitigation requirements and any mitigation provided above and beyond what is required for this project will be reserved for the ultimate Section 200 build out. As shown in Table 1 of Section 1, Lilly Run is approximately providing approximately 2,067 LF of perennial stream credit.

12. RESTORATION DESIGN DISCUSSION AND MITIGATION WORK PLAN

The basis for the design is to develop a stable channel dimension, pattern, and profile that will transport the fine sediment load from the upper watershed over time while maintaining a stable channel dynamic equilibrium, where channel dimension and facet sequence vary only within the stable natural variability of the site. Channel dimension should persist without significant aggregation or degradation; however, floodplains would serve as sinks for the deposition of fine sediments. To understand the long-term dynamic equilibrium of the proposed design, one needs to understand the condition of the proposed streambed substrate. The foundation of the design of Lilly Run include the following:

- Improve water quality by creating a low-elevation riparian floodplain and dense riparian root zone that is highly attached to the active channel, eliminating erosion and downstream sedimentation and providing increased storage to capture and treat nutrients originating from the highly urbanized upper watershed.
- Provide additional sinuosity to the channel and a more appropriate riffle-pool facet sequence.
- Streambed substrate will be comprised of imported furnished underlayment sized to withstand the maximum shear stress of the channel.
- Developing a floodplain that can withstand shear stresses not to exceed 2.0 lbs./sq.ft., the threshold for vegetative stability.
- Lowering of the 100-year floodplain elevation and in hand decreasing the footprint of the 100-year floodplain. The reduced floodplain elevation should reduce the extent of flooding of adjacent areas that have a history of flooding events.

The proposed restoration technique to be utilized is floodplain restoration, which focuses on replacing existing eroding stream banks and connecting the stream channel to an easily accessible floodplain. This technique is based upon the research of Walters and Merits (Walter & Merritts, 2008). This technique maximizes ecological uplift through the following functions and values:

- Increasing floodplain and channel connectivity
- Diversifying wetland hydrology through incorporating surface, groundwater, and flood flow hydrology into floodplain wetlands
- Encouraging greater hyporheic exchange
- Augmenting stream channel base flow through contact and connectivity with the floodplain surface and groundwater table
- Increasing the physical quantity of wetlands at the site
- Increasing frequency of flood flow contact with floodplain surfaces and dense proposed hydrophytic vegetation, which increases opportunity for nutrient processing and suspended sediment deposition during flood flows as well as base flow.

The restoration of Lilly Run will aim towards establishing a natural riparian corridor using native materials found on-site and attempt to reduce the use of imported materials or hard armoring structures. Major design elements and/or improvements to existing natural features to be utilized in the proposed restoration include:

Woody Materials:

Trees and other woody materials removed during excavation of the proposed lower floodplain as well as those imported from other incidental clearing and grubbing activities will not be repurposed and used on this site due to the high energy flows from the highly urbanized upstream watershed, as well as the poor quality of the on-site materials for re-use. Although not preferred, some hard-armoring structures will be implemented in order for grade control and habitat features throughout the proposed channel and floodplain to be able to withstand peak discharges.

Wood structures to be potentially imported within the Lilly Run project site include:

• Live Fascines and Live Stakes. Live fascines and live stakes may be utilized primarily on the outside of channel meander bends to either form or provide immediate stabilization and support to the streambanks. These materials serve as structural support to earth and soil stabilization matting, trapping fine sediment and binding it to the floodplain surface. A variety of species may be utilized adapted to permanently saturated conditions and providing critical near bank habitat, food sources and streambank stability.

Other Stability Measures:

Throughout Lilly Run, there are constraints that may require the proposed design to include additional stability measures. It is anticipated based on field observations that a portion or all the following structures or practices may be utilized to make the necessary improvements to these areas:

- In-Stream Rock Structures. In-Stream Rock Structures may consist of rock cross vanes, rock j-hook vanes, or random boulder placements for providing additional grade control and offsetting higher shear stresses and velocities in steeper reaches or where grade may be necessary to transition flows at confluence points. The use of rock structures may also provide deeper pool areas, varying flow dynamics and oxygenation of the water for improved habitat and water chemistry.
- **Preformed Scour Holes.** Preformed Scour Holes may be utilized at the outfall of the existing pipes at reaches 1, 2 and 3 to prevent bed scour and allow for the vertical and lateral expansion of excessive energy exiting the structure. The use of Preformed Scour Holes is an effective method of quickly transitioning high energy flows to a low energy condition and preserving the integrity of restoration efforts immediately downstream.
- **Imported Gravel Underlayment.** A coarser gravel underlayment may be necessary in portions of steeper reaches to offset higher shear stresses and velocities on the bed of the channel. The underlayment will be sized to resist the peak discharges anticipated through the full hydrograph and will likely be choked-in with native substrate found at the project site.

Conceptual design plans have been included in **Appendix E** to show preliminary floodplain width, bankfull dimensions, structure locations, landscaping and site access. The preliminary floodplain width was determined through simplistic shear stress computations to provide a floodplain that reduces the proposed 100-year shear stresses to 2.0 lbs/sf or less and avoids impacts to adjacent trees and other existing resources. The typical section was determined from the bankfull channel dimensions collected in the field

to create a proposed condition that promotes frequent flooding of the surrounding floodplain. It is anticipated that both the floodplain and channel dimensions will be modified for future submissions.

The proposed design will improve upon existing conditions by providing additional sinuosity to the channel and a more appropriate riffle-pool facet sequence. Design computations will be provided with future submittals.

13. MAINTENANCE PLAN

All maintenance requirements for this site shall follow the standards set forth in the Compensatory Mitigation Plan and 2008 Final Mitigation Rule.

14. MONITORING REQUIREMENTS AND PERFORMANCE STANDARDS

All monitoring requirements and performance standards for this site shall follow the standards set forth in the Compensatory Mitigation Plan and 2008 Final Mitigation Rule.

15. LONG-TERM MANAGEMENT PLAN

All long-term management for this site shall follow the standards set forth in the Compensatory Mitigation Plan and 2008 Final Mitigation Rule.

16. FINANCIAL ASSURANCES

The MDTA, as a state agency, operates on a 5-year Transportation Improvement Program (TIP) cycle and has allocated \$1.1 billion as a specific line item in its TIP budget to construct Phases I and II of the I-95 ETL Northbound Extension Project (see **Appendix F**). The funding allocated for the project is inclusive of any compensatory mitigation, including required construction, monitoring, and long-term maintenance activities, for unavoidable impacts associated with the proposed improvements.

17. REFERENCES

Andrews, E.D., 1980, Effective and bankfull discharges of streams in the Yampa River basin, Colorado and Wyoming: Journal of Hydrology, v. 46, p. 311–330.

Andrews, E. D., 1984. Bed-material entrainment and hydraulic geometry of gravel-bed rivers in Colorado, Geological Society of America Bulletin, Vol. 95, Pages 371-378.

Andrews, E. D., 1994. Marginal bed load transport in a gravel bed stream, Sagehen Creek, California, Water Resource Research, Vol. 30, No. 7, Pages 2241-2250.

Berg, J. et al. 2014. *Recommendations of the Expert Panel to Define Removal Rates for Individual Stream Restoration Projects.* Submitted to: Urban Stormwater Work Group and Chesapeake Bay Partnership.

Bravard JP, Kondolf GM, and Piégay H. 1999. *Environmental and societal effects of channel incision and remedial strategies*. In: *Incised River Channels*, SE Darby and A Simon (eds.). John Wiley and Sons, Chichester, England, pp. 304341.

Bunte, K. and Abt, S. R., 2001. Sampling Surface and Subsurface Particle-Size Distributions in Wadable Gravel- and Cobble-Bed Streams for Analyses in Sediment Transport, Hydraulics, and Streambed Monitoring. United States Department of Agriculture, Forest Service, General Technical Report RMRS-GTR-74.

Chang, H.H., 1988. *Fluvial Processes in River Engineering*, John Wiley and Sons, New York and other cities, citing Fortier, S., and Scobey, F.C. (1926). "Permissible canal velocities," Transactions of the ASCE, 89:940-984.

Chaplin, J.J. 2005. *Development of Regional Curves Relating Bankfull-Channel Geometry and Discharge to Drainage Area for Streams in Pennsylvania and Selected Areas of Maryland*. U.S. Department of the Interior, U.S. Geological Survey. Scientific Investigations Report 2007-5147.

Limerinos, J.T., 1970. *Determination of the Manning's Coefficient from Measured Bed Roughness in Natural Channels*. U.S. Geological Survey Water Supply Paper 1899-B, 47 pp.

Merritts, Dorothy J. and Walter, Robert C., 2008. *Natural Streams and the Legacy of Water-Powered Mills*, Science Volume 319, Pages 299-304

Merritts, Dorothy, Walter, Robert et al, 2011. *Anthropocene streams and base-level controls from historic dams in the unglaciated mid-Atlantic region, USA*. Phil. Trans. R. Soc. A 2011 369, 976-1009.

Moglen, Dr. Glenn E. *Introduction to GISHydro2000*. November 2007. University of Maryland, Department of Civil and Environmental Engineering.

Parola AC. 2011. *Reestablishing Groundwater and Surface Water Connections in Stream Restoration*. Sustain, a journal of environmental and sustainability issues, Spring/Summer 2011. The Kentucky Institute for the Environment and Sustainable Development. University of Louisville, KY.

Oberholtzer W and Parola AC. 2008. *Restoration of Hydrologic Functions of Streams Impacted by Milldams. Proceedings*, World Environmental & Water Resources Congress 2008. ASCE, Honolulu, Hawaii.

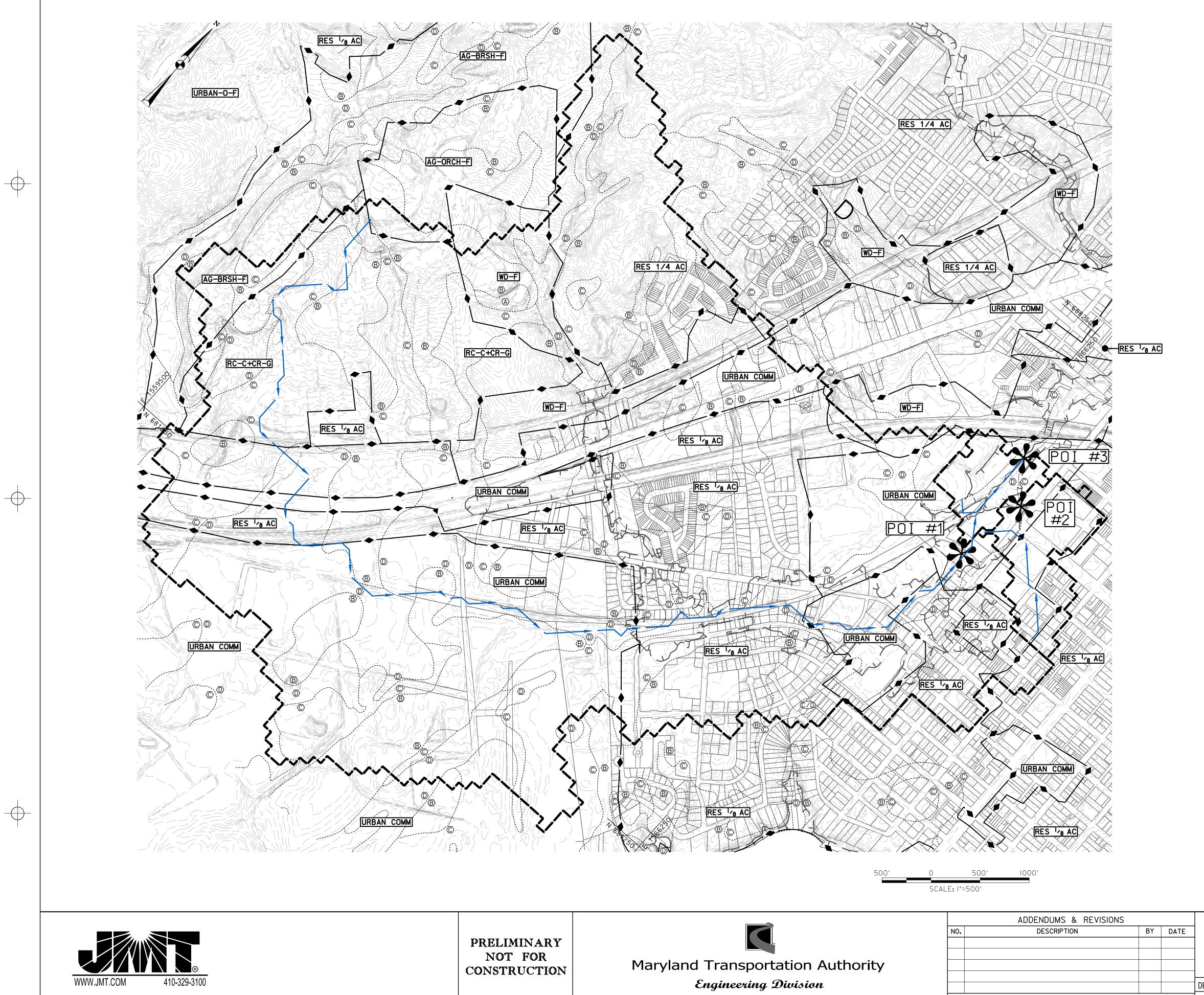
Rosgen, David L. 1996. Applied River Morphology, Wildland Hydrology Books, Pagosa Springs, Colorado.

Rosgen, David L. 1997. *A Geomorphological Approach to Restoration of Incised Rivers*, Proceedings of the Conference on Management of Landscapes Disturbed by Channel Incision.

Rosgen, David L. 2006. *Watershed Assessment of River Stability and Sediment Supply (WARSSS).* Wildland Hydrology. Fort Collins Colorado.

Interagency Mitigation Task Force (IMTF). 1994. *Maryland Compensatory Mitigation Guidance*. U.S. Army Corps of Engineers, U.S. Fish and Wildlife Service, U.S. Environmental Protection Agency, National Marine Fisheries Service, Maryland Department of the Environment, Maryland Department of Natural Resources, and Maryland State Highway Administration. August.

U.S. Army Corps of Engineers (USACE) and Environmental Protection Agency (EPA). 2008. *Compensatory Mitigation for Losses of Aquatic Resources*. Code of Federal Regulations (33 CFR Part 332). April.



Appendix A

Hydrology Mapping and Computations

L FILE: \\jmt.corp.local\jmtdfs\SMD\130770_048_195_ETL_N_Tran\CADD\Lilly Run\pDA-E000-KH3009_Lilly Run Mitigation.dgn DATE: Wednesday, June 05, 2019 AT 11:24 AM

DISCHARGE SUMMARY TABLE					
POI	Q ₂	Q ₁₀	Q ₁₀₀		
3*	299	809	2420		
*DISCHAR	GE AT DOV	WNSTREAM	MOST POINT	0F	

PROJECT SITE.

DRAINAGE AREA SUMMARY TABLE						
POI	D.A. (AC.)	TcPATH	RCN			
1	897.92	1.126	86			
2	31.45	0.300	91			
3	939.61	2.418	85			

<u>LEGEND</u>

	EXISTING CONTOUR
	SOIL BOUNDARY
\bigcirc	SOIL TYPE
*	POINT OF INVESTIGATION (POI)
-	TCPATH (TIME OF CONCENTRATION)
	DRAINAGE AREA BOUNDARY
	LAND USE BOUNDARY
RES 1/4 AC	RESIDENTIAL 1/4 ACRE
RES 1/8 AC	RESIDENTIAL 1/8 ACRE
URBAN COMM	URBAN COMMERCIAL
URBAN-O-F	URBAN OPEN SPACE-FAIR
AG-ORCH-F	AGRICULTURAL ORCHARD-FAIR
AG-BRSH-F	AGRICULTURAL BRUSH-FAIR
RC-C+CR-G	ROW CROP CONTOURED W/ COVER-GOOD
WD-F	WOODS-FAIR

HORIZONTAL DATUM NAD 83/91

VERTICAL DATUM NAVD 88 contract no. KH-3009 JOHN F. KENNEDY MEMORIAL HIGHWAY I-95 ETL NORTHBOUND EXTENSION DRAWING NO. DA-01 LILLY RUN DRAINAGE AREA MAP SHEET NO. CHECKED BY JM DESIGNED BY <u>KNH</u> DRAWN BY <u>KNH</u> I OF I CONST. REVIEW BY DATE ___ JUNE 2019

JOB TR-20 TITLE	I-95 ETL				NOPLOTS
TITLE	Lilly Run				
2 XSECTN	003		1.0	42.20	
8			41.06	0.00	0.00
8			41.34	0.76	0.69
8			41.63	4.68	2.46
8			41.91	12.57	4.95
8			42.20	24.91	8.06
9 ENDTBL					
5 RAINFL	1	.1			
8	0.0000	0.0011	0.0021	0.0032	0.0042
8	0.0053	0.0063	0.0074	0.0085	0.0095
8	0.0106	0.0116	0.0127	0.0138	0.0148
8	0.0159	0.0169	0.0180	0.0190	0.0201
8	0.0212	0.0222	0.0233	0.0243	0.0254
8	0.0264	0.0275	0.0286	0.0296	0.0307
8	0.0317	0.0328	0.0338	0.0349	0.0360
8	0.0370	0.0381	0.0391	0.0402	0.0413
8	0.0423	0.0434	0.0444	0.0455	0.0465
8	0.0476	0.0487	0.0497	0.0508	0.0518
8	0.0529	0.0539	0.0550	0.0561	0.0571
8	0.0582	0.0592	0.0603	0.0613	0.0624
8	0.0635	0.0661	0.0688	0.0715	0.0742
8	0.0769	0.0795	0.0822	0.0849	0.0876
8	0.0902	0.0929	0.0956	0.0983	0.1009
8	0.1036	0.1063	0.1090	0.1117	0.1143
8	0.1170	0.1197	0.1224	0.1250	0.1277
8	0.1304	0.1331	0.1358	0.1384	0.1411
8	0.1438	0.1484	0.1530	0.1576	0.1622
8	0.1668	0.1714	0.1760	0.1806	0.1852
8	0.1898	0.1943	0.1989	0.2035	0.2081
8	0.2127	0.2169	0.2210	0.2252	0.2293
8	0.2334	0.2428	0.2521	0.2615	0.2708
8	0.2802	0.2976	0.3150	0.3428	0.3869
8	0.5000	0.6131	0.6572	0.6850	0.7024
8	0.7198	0.7292	0.7385	0.7479	0.7572
8	0.7666	0.7707	0.7748	0.7790	0.7831
8	0.7873	0.7919	0.7965	0.8011	0.8057
8	0.8102	0.8148	0.8194	0.8240	0.8286
8	0.8332	0.8378	0.8424	0.8470	0.8516
8	0.8562	0.8589	0.8616	0.8642	0.8669

		TR20OUT.DAT				
8	0.8696	0.8723	0.8750	0.8776	0.8803	
8	0.8830	0.8857	0.8883	0.8910	0.8937	
8	0.8964	0.8991	0.9017	0.9044	0.9071	
8	0.9098	0.9124	0.9151	0.9178	0.9205	
8	0.9231	0.9258	0.9285	0.9312	0.9339	
8	0.9365	0.9376	0.9387	0.9397	0.9408	
8	0.9418	0.9429	0.9439	0.9450	0.9461	
8	0.9471	0.9482	0.9492	0.9503	0.9513	

*******	***********	30-80 LIST OF	INPUT DATA	(CONTINUED)	******
8	0.9524	0.9535	0.9545	0.9556	0.9566
8	0.9577	0.9587	0.9598	0.9609	0.9619
8	0.9630	0.9640	0.9651	0.9662	0.9672
8	0.9683	0.9693	0.9704	0.9714	0.9725
8	0.9736	0.9746	0.9757	0.9767	0.9778
8	0.9788	0.9799	0.9810	0.9820	0.9831
8	0.9841	0.9852	0.9862	0.9873	0.9884
8	0.9894	0.9905	0.9915	0.9926	0.9937
8	0.9947	0.9958	0.9968	0.9979	0.9989
8	1.0000	1.0000	1.0000	1.0000	1.0000
9 ENDTBL					
5 RAINFL		.1			
8	0.0000	0.0011	0.0021	0.0032	0.0042
8	0.0053	0.0064	0.0074	0.0085	0.0096
8	0.0106	0.0117	0.0127	0.0138	0.0149
8	0.0159	0.0170	0.0181	0.0191	0.0202
8	0.0212	0.0223	0.0234	0.0244	0.0255
8	0.0265	0.0276	0.0287	0.0297	0.0308
8	0.0319	0.0329	0.0340	0.0350	0.0361
8	0.0372	0.0382	0.0393	0.0404	0.0414
8	0.0425	0.0435	0.0446	0.0457	0.0467
8	0.0478	0.0488	0.0499	0.0510	0.0520
8	0.0531	0.0542	0.0552	0.0563	0.0573
8	0.0584	0.0595	0.0605	0.0616	0.0627
8	0.0637	0.0664	0.0691	0.0717	0.0744
8	0.0771	0.0798	0.0824	0.0851	0.0878
8	0.0905	0.0931	0.0958	0.0985	0.1012
8	0.1038	0.1065	0.1092	0.1119	0.1146
8	0.1172	0.1199	0.1226	0.1253	0.1279
8 8	0.1306	0.1333	0.1360	0.1386	0.1413
8 8	0.1440	0.1484	0.1529	0.1573	0.1618
8 8	0.1662	0.1707	0.1752	0.1796	0.1841
8 8	0.1885	0.1930	0.1974	0.2019	0.2063
ō	0.2108	0.2150	0.2193	0.2235	0.2278

			TR200UT.D/	AT .	
8	0.2321	0.2413	0.2506	0.2599	0.2692
8	0.2785	0.2965	0.3145	0.3430	0.3879
8	0.5000	0.6121	0.6570	0.6855	0.7035
8	0.7215	0.7308	0.7401	0.7494	0.7587
8	0.7679	0.7722	0.7765	0.7807	0.7850
8	0.7892	0.7937	0.7981	0.8026	0.8070
8	0.8115	0.8159	0.8204	0.8248	0.8293
8	0.8338	0.8382	0.8427	0.8471	0.8516
8	0.8560	0.8587	0.8614	0.8640	0.8667
8	0.8694	0.8721	0.8747	0.8774	0.8801
8	0.8828	0.8854	0.8881	0.8908	0.8935
8	0.8962	0.8988	0.9015	0.9042	0.9069
8	0.9095	0.9122	0.9149	0.9176	0.9202
8	0.9229	0.9256	0.9283	0.9309	0.9336
8	0.9363	0.9373	0.9384	0.9395	0.9405
8	0.9416	0.9427	0.9437	0.9448	0.9458
1					

***	***************	-80 LIST 0	F INPUT DATA	(CONTINUED)*	******
8	0.9469	0.9480	0.9490	0.9501	0.9512
8	0.9522	0.9533	0.9543	0.9554	0.9565
8	0.9575	0.9586	0.9596	0.9607	0.9618
8	0.9628	0.9639	0.9650	0.9660	0.9671
8	0.9681	0.9692	0.9703	0.9713	0.9724
8	0.9735	0.9745	0.9756	0.9766	0.9777
8	0.9788	0.9798	0.9809	0.9819	0.9830
8	0.9841	0.9851	0.9862	0.9873	0.9883
8	0.9894	0.9904	0.9915	0.9926	0.9936
8	0.9947	0.9958	0.9968	0.9979	0.9989
8	1.0000	1.0000	1.0000	1.0000	1.0000
	ENDTBL				
	RAINFL 3	.1			
8	0.0000	0.0011	0.0023	0.0034	0.0046
8	0.0057	0.0069	0.0080	0.0092	0.0103
8	0.0115	0.0126	0.0137	0.0149	0.0160
8	0.0172	0.0183	0.0195	0.0206	0.0218
8	0.0229	0.0241	0.0252	0.0263	0.0275
8	0.0286	0.0298	0.0309	0.0321	0.0332
8	0.0344	0.0355	0.0366	0.0378	0.0389
8	0.0401	0.0412	0.0424	0.0435	0.0447
8	0.0458	0.0470	0.0481	0.0492	0.0504
8	0.0515	0.0527	0.0538	0.0550	0.0561
8	0.0573	0.0584	0.0596	0.0607	0.0618
8	0.0630	0.0641	0.0653	0.0664	0.0676
8	0.0687	0.0714	0.0742	0.0769	0.0796

			TR200UT.D	АT	
8	0.0824	0.0851	0.0878	0.0905	0.0933
8	0.0960	0.0987	0.1014	0.1042	0.1069
8	0.1096	0.1124	0.1151	0.1178	0.1205
8	0.1233	0.1260	0.1287	0.1315	0.1342
8	0.1369	0.1396	0.1424	0.1451	0.1478
8	0.1505	0.1549	0.1592	0.1636	0.1679
8	0.1722	0.1766	0.1809	0.1853	0.1896
8	0.1939	0.1983	0.2026	0.2070	0.2113
8	0.2156	0.2199	0.2242	0.2284	0.2327
8	0.2370	0.2462	0.2555	0.2647	0.2740
8	0.2832	0.3023	0.3213	0.3509	0.3959
8	0.5000	0.6041	0.6491	0.6787	0.6977
8	0.7168	0.7260	0.7353	0.7445	0.7538
8	0.7630	0.7673	0.7716	0.7758	0.7801
8	0.7844	0.7887	0.7930	0.7974	0.8017
8	0.8061	0.8104	0.8147	0.8191	0.8234
8	0.8278	0.8321	0.8364	0.8408	0.8451
8	0.8495	0.8522	0.8549	0.8576	0.8604
8	0.8631	0.8658	0.8685	0.8713	0.8740
8	0.8767	0.8795	0.8822	0.8849	0.8876
8	0.8904	0.8931	0.8958	0.8986	0.9013
8	0.9040	0.9067	0.9095	0.9122	0.9149
8	0.9176	0.9204	0.9231	0.9258	0.9286
8	0.9313	0.9324	0.9336	0.9347	0.9359
1					

****	***************	0-80 LIST C	OF INPUT DATA	(CONTINUED)	******
8	0.9370	0.9382	0.9393	0.9404	0.9416
8	0.9427	0.9439	0.9450	0.9462	0.9473
8	0.9485	0.9496	0.9508	0.9519	0.9530
8	0.9542	0.9553	0.9565	0.9576	0.9588
8	0.9599	0.9611	0.9622	0.9634	0.9645
8	0.9656	0.9668	0.9679	0.9691	0.9702
8	0.9714	0.9725	0.9737	0.9748	0.9759
8	0.9771	0.9782	0.9794	0.9805	0.9817
8	0.9828	0.9840	0.9851	0.9863	0.9874
8	0.9885	0.9897	0.9908	0.9920	0.9931
8	0.9943	0.9954	0.9966	0.9977	0.9989
8	1.0000	1.0000	1.0000	1.0000	1.0000
9 EI	NDTBL				
5 R.	AINFL 4	.1			
8	0.0000	0.0012	0.0024	0.0036	0.0049
8	0.0061	0.0073	0.0085	0.0097	0.0109
8	0.0121	0.0134	0.0146	0.0158	0.0170
8	0.0182	0.0194	0.0206	0.0219	0.0231

			TR200UT.DA	AT	
8	0.0243	0.0255	0.0267	0.0279	0.0292
8	0.0304	0.0316	0.0328	0.0340	0.0352
8	0.0364	0.0377	0.0389	0.0401	0.0413
8	0.0425	0.0437	0.0449	0.0462	0.0474
8	0.0486	0.0498	0.0510	0.0522	0.0534
8	0.0547	0.0559	0.0571	0.0583	0.0595
8	0.0607	0.0619	0.0632	0.0644	0.0656
8	0.0668	0.0680	0.0692	0.0705	0.0717
8	0.0729	0.0757	0.0785	0.0813	0.0841
8	0.0869	0.0897	0.0925	0.0954	0.0982
8	0.1010	0.1038	0.1066	0.1094	0.1122
8	0.1150	0.1178	0.1206	0.1234	0.1262
8	0.1291	0.1319	0.1347	0.1375	0.1403
8	0.1431	0.1459	0.1487	0.1515	0.1543
8	0.1571	0.1615	0.1659	0.1703	0.1747
8	0.1791	0.1835	0.1878	0.1922	0.1966
8	0.2010	0.2054	0.2098	0.2141	0.2185
8	0.2229	0.2272	0.2315	0.2359	0.2402
8	0.2445	0.2539	0.2632	0.2726	0.2820
8	0.2913	0.3107	0.3301	0.3596	0.4033
8	0.5000	0.5967	0.6404	0.6699	0.6893
8	0.7087	0.7180	0.7274	0.7368	0.7461
8	0.7555	0.7598	0.7641	0.7685	0.7728
8	0.7771	0.7815	0.7859	0.7902	0.7946
8	0.7990	0.8034	0.8078	0.8122	0.8165
8	0.8209	0.8253	0.8297	0.8341	0.8385
8	0.8429	0.8457	0.8485	0.8513	0.8541
8	0.8569	0.8597	0.8625	0.8653	0.8681
8	0.8709	0.8738	0.8766	0.8794	0.8822
8	0.8850	0.8878	0.8906	0.8934	0.8962
8	0.8990	0.9018	0.9046	0.9075	0.9103
8	0.9131	0.9159	0.9187	0.9215	0.9243

8	0.9271	0.9283	0.9295	0.9308	0.9320
8	0.9332	0.9344	0.9356	0.9368	0.9381
8	0.9393	0.9405	0.9417	0.9429	0.9441
8	0.9453	0.9466	0.9478	0.9490	0.9502
8	0.9514	0.9526	0.9538	0.9551	0.9563
8	0.9575	0.9587	0.9599	0.9611	0.9623
8	0.9636	0.9648	0.9660	0.9672	0.9684
8	0.9696	0.9708	0.9721	0.9733	0.9745
8	0.9757	0.9769	0.9781	0.9794	0.9806
8	0.9818	0.9830	0.9842	0.9854	0.9866

8 0.9879 0.9891 0.9903 0.9915 0.9927 8 0.9939 0.9951 0.9964 0.9976 0.9988 8 1.0000 1.0000 1.0000 1.0000 1.0000 9 ENDTBL 5 .1 8 0.0005 0.0013 0.0103 0.0116 8 0.0006 0.0017 0.0220 0.0233 0.0246 8 0.0194 0.0207 0.0220 0.0233 0.0246 8 0.0129 0.0172 0.0220 0.0233 0.0246 8 0.0129 0.0272 0.0228 0.0213 0.0246 8 0.0323 0.0362 0.0375 0.0349 0.0362 0.0375 8 0.0388 0.4041 0.4041 0.4047 0.4440 8 0.0453 0.4666 0.6479 0.4922 0.6585 8 0.0517 0.6580 0.6621 0.6634 8 0.4057 0.4660 0.6673				TR200UT.DAT		
8 1.0000 1.0000 1.0000 1.0000 9 ENDTBL - - 5 RAINFL 5 .1 - 8 0.0006 0.0013 0.0026 0.0039 0.0013 8 0.0129 0.0142 0.0155 0.0168 0.0116 8 0.0129 0.0277 0.0220 0.0233 0.0246 8 0.0233 0.0366 0.0414 0.0427 0.0440 8 0.0323 0.0366 0.0414 0.0427 0.0440 8 0.0453 0.0466 0.0479 0.0492 0.0535 8 0.0453 0.0466 0.0479 0.0492 0.0534 8 0.0517 0.0530 0.0543 0.0686 0.0621 0.0634 8 0.0712 0.0724 0.0737 0.0750 0.0763 8 0.0712 0.1252 0.1282 0.1312 0.1342 8 0.1371 0.1404 0.1133	8	0.9879	0.9891	0.9903	0.9915	0.9927
9 ENDTBL 5 RAINFL 5 .1 8 0.0000 0.0013 0.0026 0.0039 0.0052 8 0.0065 0.0078 0.0091 0.0103 0.0116 8 0.0129 0.0142 0.0155 0.0168 0.0181 8 0.0129 0.0272 0.0220 0.0233 0.0246 8 0.0259 0.0272 0.0225 0.0275 0.0466 8 0.0323 0.0336 0.0449 0.0427 0.0446 8 0.0453 0.0466 0.0479 0.0492 0.0505 8 0.0517 0.0530 0.0543 0.0668 0.0621 0.0634 8 0.0647 0.0608 0.0621 0.0634 0.0647 0.0737 0.0750 0.0763 8 0.0776 0.0806 0.0836 0.0865 0.0895 0.1044 8 0.1074 0.1104 0.1133 0.1163 0.1133 8 0.1074 0.1401 0.1431 0.1441 0.1444 8	8	0.9939	0.9951	0.9964	0.9976	0.9988
5 RAINFL 5 .1 8 0.0000 0.0013 0.0026 0.0039 0.0052 8 0.0065 0.0078 0.0091 0.0103 0.0116 8 0.0129 0.0142 0.0155 0.0168 0.0181 8 0.0259 0.0272 0.0285 0.0298 0.0310 8 0.0323 0.0336 0.0349 0.0362 0.0375 8 0.0388 0.0401 0.0414 0.0492 0.0505 8 0.0453 0.0666 0.0479 0.0492 0.0505 8 0.0582 0.0595 0.0608 0.0621 0.0634 8 0.0647 0.0660 0.0673 0.0686 0.0699 8 0.0712 0.0724 0.0737 0.0750 0.0763 8 0.0712 0.1041 0.1133 0.1163 0.1193 8 0.1074 0.1104 0.1133 0.1163 0.1193 8 0.1223 0.1252 0.1282 0.1312 0.1342 8 0.1371	8	1.0000	1.0000	1.0000	1.0000	1.0000
8 0.0000 0.0013 0.0026 0.0039 0.0052 8 0.0065 0.0078 0.0091 0.0103 0.0116 8 0.0129 0.0142 0.0155 0.0163 0.0116 8 0.0194 0.0207 0.0220 0.0233 0.0246 8 0.0323 0.0336 0.0349 0.0362 0.0375 8 0.0323 0.0336 0.04414 0.0427 0.0440 8 0.0351 0.0453 0.0466 0.0479 0.0492 0.0505 8 0.0517 0.0530 0.0543 0.0556 0.0569 8 0.0647 0.0660 0.0673 0.0686 0.0699 8 0.0712 0.0724 0.0737 0.0750 0.0763 8 0.0250 0.0985 0.1014 0.1143 8 0.1074 0.1164 0.1133 0.1163 0.1193 8 0.1223 0.1252 0.1282 0.1312 0.1342	9 ENDTBL					
8 0.0065 0.0078 0.0091 0.0103 0.0116 8 0.0129 0.0142 0.0155 0.0168 0.0181 8 0.0194 0.0207 0.0220 0.0233 0.0246 8 0.0259 0.0272 0.0285 0.0298 0.0310 8 0.0253 0.0349 0.0362 0.0375 8 0.0388 0.0401 0.0414 0.0427 0.0440 8 0.0453 0.0466 0.0479 0.0492 0.0505 8 0.0517 0.0530 0.0543 0.0556 0.0634 8 0.0647 0.06608 0.0621 0.0634 8 0.0712 0.0737 0.0750 0.0763 8 0.0776 0.0806 0.0836 0.0865 0.0895 8 0.0223 0.1223 0.1223 0.1223 0.1212 0.1312 8 0.1074 0.1193 0.1163 0.1193 8 0.1220 <	5 RAINFL 5		.1			
8 0.0129 0.0142 0.0155 0.0168 0.0181 8 0.0194 0.0207 0.0220 0.0233 0.0246 8 0.0259 0.0272 0.0285 0.0298 0.0310 8 0.0323 0.0336 0.0349 0.0362 0.0375 8 0.0388 0.0466 0.0414 0.0427 0.0440 8 0.0453 0.0466 0.0479 0.0492 0.0505 8 0.0517 0.0530 0.0543 0.0556 0.0608 8 0.0647 0.0666 0.0673 0.0686 0.0631 8 0.0712 0.0724 0.0737 0.0750 0.0768 8 0.0776 0.0806 0.0836 0.0865 0.0895 8 0.1074 0.1104 0.1133 0.1163 0.1193 8 0.1223 0.1252 0.1282 0.1312 0.1342 8 0.1220 0.1550 0.1580 0.1609 0.1639	8	0.0000	0.0013	0.0026	0.0039	0.0052
8 0.0194 0.0207 0.0220 0.0233 0.0246 8 0.0259 0.0272 0.0285 0.0298 0.0310 8 0.0323 0.0336 0.0349 0.0362 0.0375 8 0.0388 0.0401 0.0414 0.0427 0.0440 8 0.0453 0.0466 0.0479 0.0492 0.0505 8 0.0517 0.0530 0.0543 0.0556 0.0669 8 0.0517 0.0660 0.0673 0.0686 0.0691 8 0.0647 0.0660 0.0673 0.0686 0.0835 8 0.0776 0.0806 0.0836 0.0865 0.0895 8 0.0925 0.0955 0.0985 0.1014 0.1044 8 0.1074 0.1133 0.1163 0.1139 8 0.1223 0.1252 0.1282 0.1312 0.1342 8 0.1371 0.1401 0.1431 0.1461 0.1490	8	0.0065	0.0078	0.0091	0.0103	0.0116
8 0.0259 0.0272 0.0285 0.0298 0.0310 8 0.0323 0.0336 0.0349 0.0362 0.0375 8 0.0388 0.0401 0.0414 0.0427 0.0440 8 0.0453 0.0466 0.0479 0.0492 0.0505 8 0.0517 0.0530 0.0543 0.0556 0.0669 8 0.0547 0.0608 0.0621 0.0634 8 0.0571 0.0530 0.0543 0.0556 0.0699 8 0.0517 0.0724 0.0737 0.0750 0.0763 8 0.0776 0.0806 0.0836 0.0865 0.0895 8 0.0925 0.0955 0.0985 0.1014 0.1044 8 0.1074 0.1104 0.1133 0.1163 0.1132 8 0.1223 0.1252 0.1282 0.1312 0.1342 8 0.1520 0.1580 0.1609 0.1639 8 <t< td=""><td>8</td><td>0.0129</td><td>0.0142</td><td>0.0155</td><td>0.0168</td><td>0.0181</td></t<>	8	0.0129	0.0142	0.0155	0.0168	0.0181
8 0.0323 0.0336 0.0349 0.0362 0.0375 8 0.0388 0.0401 0.0414 0.0427 0.0440 8 0.0453 0.0466 0.0479 0.0492 0.0555 8 0.0517 0.0530 0.0543 0.0556 0.0669 8 0.0582 0.0595 0.0608 0.0621 0.0634 8 0.0647 0.0660 0.0673 0.0686 0.0634 8 0.0712 0.0724 0.0737 0.0750 0.0763 8 0.0776 0.0806 0.0836 0.0865 0.0895 8 0.0925 0.0955 0.0985 0.1014 0.1044 8 0.1074 0.1104 0.1133 0.1163 0.1193 8 0.1223 0.1252 0.1282 0.1312 0.1342 8 0.1699 0.1550 0.1580 0.1609 0.1639 8 0.1699 0.1590 0.1580 0.1609 0.1639	8	0.0194	0.0207	0.0220	0.0233	0.0246
8 0.0388 0.0401 0.0414 0.0427 0.0440 8 0.0453 0.0466 0.0479 0.0492 0.0505 8 0.0517 0.0530 0.0643 0.0556 0.0669 8 0.0582 0.0695 0.0608 0.0621 0.0634 8 0.0647 0.0660 0.0673 0.0686 0.0699 8 0.0712 0.0724 0.0737 0.0750 0.0763 8 0.0776 0.0806 0.0885 0.1014 0.1044 8 0.0925 0.0955 0.0985 0.1014 0.1044 8 0.1074 0.1104 0.1133 0.1163 0.1193 8 0.1223 0.1252 0.1282 0.1312 0.1342 8 0.1371 0.1401 0.1431 0.1461 0.1490 8 0.1520 0.1580 0.1609 0.1639 8 0.1220 0.2165 0.2210 0.2255 0.2300	8	0.0259	0.0272	0.0285	0.0298	0.0310
8 0.0453 0.0466 0.0479 0.0492 0.0505 8 0.0517 0.0530 0.0543 0.0556 0.0569 8 0.0582 0.0595 0.0608 0.0621 0.0634 8 0.0647 0.0660 0.6673 0.0686 0.0673 8 0.0712 0.0724 0.0737 0.0750 0.0763 8 0.0776 0.0806 0.0836 0.0865 0.0895 8 0.0925 0.0955 0.0985 0.1014 0.1444 8 0.1074 0.1104 0.1133 0.1163 0.1193 8 0.1223 0.1252 0.1282 0.1312 0.1342 8 0.1371 0.1401 0.1431 0.1461 0.1490 8 0.1520 0.1550 0.1580 0.1609 0.1639 8 0.1699 0.1216 0.2210 0.2255 0.2300 8 0.2345 0.2388 0.2431 0.2474 0.2517	8	0.0323	0.0336	0.0349	0.0362	0.0375
8 0.0517 0.0530 0.0543 0.0556 0.0569 8 0.0582 0.0595 0.0608 0.0621 0.0634 8 0.0647 0.0660 0.0673 0.0686 0.0699 8 0.0712 0.0724 0.0737 0.0750 0.0763 8 0.0776 0.0806 0.0836 0.0865 0.0895 8 0.0925 0.0955 0.0985 0.1014 0.1044 8 0.1074 0.1104 0.1133 0.1163 0.1193 8 0.1223 0.1252 0.1282 0.1312 0.1342 8 0.1371 0.1401 0.1431 0.1461 0.1490 8 0.1520 0.1580 0.1609 0.1639 8 0.1669 0.1714 0.1759 0.1804 0.1849 9 0.1894 0.1939 0.1984 0.2029 0.2074 8 0.2120 0.2165 0.2210 0.2255 0.2300	8	0.0388	0.0401	0.0414	0.0427	0.0440
8 0.0582 0.0595 0.0608 0.0621 0.0634 8 0.0647 0.0660 0.0673 0.0686 0.0699 8 0.0712 0.0724 0.0737 0.0750 0.0763 8 0.0776 0.0806 0.0836 0.0865 0.0895 8 0.0925 0.0955 0.0985 0.1014 0.1044 8 0.1074 0.1104 0.1133 0.1163 0.1193 8 0.1223 0.1252 0.1282 0.1312 0.1342 8 0.1371 0.1401 0.1431 0.1461 0.1490 8 0.1520 0.1550 0.1580 0.1609 0.1639 8 0.1669 0.1714 0.1759 0.1804 0.1849 8 0.1894 0.1939 0.1984 0.2029 0.2074 8 0.2120 0.2165 0.2210 0.2255 0.2300 8 0.2345 0.2388 0.2431 0.2474 0.2517 8 0.2345 0.2387 0.6284 0.6574 0.6769	8	0.0453	0.0466	0.0479	0.0492	0.0505
8 0.0647 0.0660 0.0673 0.0686 0.0699 8 0.0712 0.0724 0.0737 0.0750 0.0763 8 0.0776 0.0806 0.0836 0.0865 0.0895 8 0.0925 0.0955 0.0985 0.1014 0.1044 8 0.1074 0.1104 0.1133 0.1163 0.1193 8 0.1223 0.1252 0.1282 0.1312 0.1342 8 0.1371 0.1401 0.1431 0.1461 0.1490 8 0.1520 0.1550 0.1580 0.1609 0.1639 8 0.1669 0.1714 0.1759 0.1804 0.1849 8 0.1894 0.1939 0.1984 0.2029 0.2074 8 0.2120 0.2165 0.2210 0.2255 0.2300 8 0.2345 0.2388 0.2431 0.2474 0.2517 8 0.2560 0.2655 0.2750 0.7345	8	0.0517	0.0530	0.0543	0.0556	0.0569
8 0.0712 0.0724 0.0737 0.0750 0.0763 8 0.0776 0.0806 0.0836 0.0865 0.0895 8 0.0925 0.0955 0.0985 0.1014 0.1044 8 0.1074 0.1104 0.1133 0.1163 0.1193 8 0.1223 0.1252 0.1282 0.1312 0.1342 8 0.1371 0.1401 0.1431 0.1461 0.1490 8 0.1520 0.1550 0.1580 0.1609 0.1639 8 0.1669 0.1714 0.1759 0.1804 0.1849 8 0.1894 0.1939 0.1984 0.2029 0.2074 8 0.2120 0.2165 0.2210 0.2255 0.2300 8 0.2345 0.2388 0.2431 0.2474 0.2517 8 0.2560 0.2655 0.2750 0.2845 0.2940 8 0.3035 0.3231 0.3426 0.3716 0.4130 8 0.5000 0.5870 0.6284 0.6574 0.6769	8	0.0582	0.0595	0.0608	0.0621	0.0634
8 0.0776 0.0806 0.0836 0.0865 0.0895 8 0.0925 0.0955 0.0985 0.1014 0.1044 8 0.1074 0.1104 0.1133 0.1163 0.1193 8 0.1223 0.1252 0.1282 0.1312 0.1342 8 0.1371 0.1401 0.1431 0.1461 0.1490 8 0.1520 0.1550 0.1580 0.1609 0.1639 8 0.1669 0.1714 0.1759 0.1804 0.1849 8 0.1894 0.1939 0.1984 0.2029 0.2074 8 0.2120 0.2165 0.2210 0.2255 0.2300 8 0.2345 0.2388 0.2431 0.2474 0.2517 8 0.2560 0.2655 0.2750 0.2845 0.2940 8 0.3035 0.3231 0.3426 0.3716 0.4130 8 0.5000 0.5870 0.6284 0.6574 0.6769 8 0.7400 0.7483 0.7526 0.7569 0.7345	8	0.0647	0.0660	0.0673	0.0686	0.0699
8 0.0925 0.0955 0.0985 0.1014 0.1044 8 0.1074 0.1104 0.1133 0.1163 0.1193 8 0.1223 0.1252 0.1282 0.1312 0.1342 8 0.1371 0.1401 0.1431 0.1461 0.1490 8 0.1520 0.1550 0.1580 0.1609 0.1639 8 0.1669 0.1714 0.1759 0.1804 0.1849 8 0.1894 0.1939 0.1984 0.2029 0.2074 8 0.2120 0.2165 0.2210 0.2255 0.2300 8 0.2345 0.2388 0.2431 0.2474 0.2517 8 0.2560 0.2655 0.2750 0.2845 0.2940 8 0.3035 0.3231 0.3426 0.3716 0.4130 8 0.5000 0.5870 0.6284 0.6574 0.6769 8 0.5000 0.5870 0.6284 0.6574 0.6769 8 0.7440 0.7483 0.7526 0.7569 0.7612	8	0.0712	0.0724	0.0737	0.0750	0.0763
8 0.1074 0.1104 0.1133 0.1163 0.1193 8 0.1223 0.1252 0.1282 0.1312 0.1342 8 0.1371 0.1401 0.1431 0.1461 0.1490 8 0.1520 0.1550 0.1580 0.1609 0.1639 8 0.1669 0.1714 0.1759 0.1804 0.1849 8 0.1894 0.1939 0.1984 0.2029 0.2074 8 0.2120 0.2165 0.2210 0.2255 0.2300 8 0.2345 0.2388 0.2431 0.2474 0.2517 8 0.2560 0.2655 0.2750 0.2845 0.2940 8 0.3035 0.3231 0.3426 0.3716 0.4130 8 0.5000 0.5870 0.6284 0.6574 0.6769 8 0.5000 0.5870 0.6284 0.6574 0.6769 8 0.6965 0.7060 0.7155 0.7250 0.7345 8 0.7440 0.7483 0.7526 0.7569 0.7612	8	0.0776	0.0806	0.0836	0.0865	0.0895
8 0.1223 0.1252 0.1282 0.1312 0.1342 8 0.1371 0.1401 0.1431 0.1461 0.1490 8 0.1520 0.1550 0.1580 0.1609 0.1639 8 0.1669 0.1714 0.1759 0.1804 0.1849 8 0.1894 0.1939 0.1984 0.2029 0.2074 8 0.2120 0.2165 0.2210 0.2255 0.2300 8 0.2345 0.2388 0.2431 0.2474 0.2517 8 0.2560 0.2655 0.2750 0.2845 0.2940 8 0.3035 0.3231 0.3426 0.3716 0.4130 8 0.5000 0.5870 0.6284 0.6574 0.6769 8 0.5000 0.5870 0.6284 0.6574 0.6769 8 0.5000 0.5870 0.6284 0.6574 0.6769 8 0.7440 0.7483 0.7526 0.7569 0.7122 8 0.7580 0.7906 0.7745 0.7790 0.7835	8	0.0925	0.0955	0.0985	0.1014	0.1044
80.13710.14010.14310.14610.149080.15200.15500.15800.16090.163980.16690.17140.17590.18040.184980.18940.19390.19840.20290.207480.21200.21650.22100.22550.230080.23450.23880.24310.24740.251780.25600.26550.27500.28450.294080.30350.32310.34260.37160.413080.50000.58700.62840.65740.676980.69650.70600.71550.72500.734580.74400.74830.75260.75690.761280.76550.77000.77450.77900.783580.81060.81510.81960.82410.828680.83310.83610.83910.84200.845080.84800.85100.85390.85690.859980.86290.86580.86880.87180.874880.87770.88070.88370.88670.8896		0.1074	0.1104	0.1133	0.1163	0.1193
80.15200.15500.15800.16090.163980.16690.17140.17590.18040.184980.18940.19390.19840.20290.207480.21200.21650.22100.22550.230080.23450.23880.24310.24740.251780.25600.26550.27500.28450.294080.30350.32310.34260.37160.413080.50000.58700.62840.65740.676980.69650.70600.71550.72500.734580.74400.74830.75260.75690.761280.76550.77000.77450.77900.783580.81060.81510.81960.82410.828680.83310.83610.83910.84200.845080.84800.85100.85390.85690.859980.86290.86580.86880.87180.874880.87770.88070.88370.88670.8896			0.1252	0.1282	0.1312	
80.16690.17140.17590.18040.184980.18940.19390.19840.20290.207480.21200.21650.22100.22550.230080.23450.23880.24310.24740.251780.25600.26550.27500.28450.294080.30350.32310.34260.37160.413080.50000.58700.62840.65740.676980.69650.70600.71550.72500.734580.74400.74830.75260.77690.761280.76550.77000.77450.77900.783580.81060.81510.81960.82410.828680.83310.83610.83910.84200.845080.84800.85100.85390.85690.859980.86290.86580.86880.87180.874880.87770.88070.88370.88670.8896						
80.18940.19390.19840.20290.207480.21200.21650.22100.22550.230080.23450.23880.24310.24740.251780.25600.26550.27500.28450.294080.30350.32310.34260.37160.413080.50000.58700.62840.65740.676980.69650.70600.71550.72500.734580.74400.74830.75260.75690.761280.76550.77000.77450.77900.783580.81060.81510.81960.82410.828680.83310.83610.83910.84200.845080.84800.85100.85390.85690.859980.86290.86580.86880.87180.874880.87770.88070.88370.88670.8896			0.1550	0.1580	0.1609	0.1639
80.21200.21650.22100.22550.230080.23450.23880.24310.24740.251780.25600.26550.27500.28450.294080.30350.32310.34260.37160.413080.50000.58700.62840.65740.676980.69650.70600.71550.72500.734580.74400.74830.75260.77690.761280.76550.77000.77450.77900.783580.78800.79260.79710.80160.806180.81060.81510.81960.82410.828680.83310.83610.83910.84200.845080.84800.85100.85390.85690.859980.86290.86580.86880.87180.874880.87770.88070.88370.88670.8896			0.1714		0.1804	0.1849
80.23450.23880.24310.24740.251780.25600.26550.27500.28450.294080.30350.32310.34260.37160.413080.50000.58700.62840.65740.676980.69650.70600.71550.72500.734580.74400.74830.75260.75690.761280.76550.77000.77450.77900.783580.78800.79260.79710.80160.806180.81060.81510.81960.82410.828680.83310.83610.83910.84200.845080.84800.85100.85390.85690.859980.86290.86580.86880.87180.874880.87770.88070.88370.88670.8896		0.1894	0.1939	0.1984	0.2029	0.2074
8 0.2560 0.2655 0.2750 0.2845 0.2940 8 0.3035 0.3231 0.3426 0.3716 0.4130 8 0.5000 0.5870 0.6284 0.6574 0.6769 8 0.6965 0.7060 0.7155 0.7250 0.7345 8 0.7440 0.7483 0.7526 0.7769 0.7612 8 0.7655 0.7700 0.7745 0.7790 0.7835 8 0.7880 0.7926 0.7971 0.8016 0.8061 8 0.8106 0.8151 0.8196 0.8241 0.8286 8 0.8331 0.8361 0.8391 0.8420 0.8450 8 0.8480 0.8510 0.8539 0.8569 0.8599 8 0.8629 0.8658 0.8688 0.8718 0.8748 8 0.8777 0.8807 0.8837 0.8867 0.8896						
8 0.3035 0.3231 0.3426 0.3716 0.4130 8 0.5000 0.5870 0.6284 0.6574 0.6769 8 0.6965 0.7060 0.7155 0.7250 0.7345 8 0.7440 0.7483 0.7526 0.7569 0.7612 8 0.7655 0.7700 0.7745 0.7790 0.7835 8 0.7880 0.7926 0.7971 0.8016 0.8061 8 0.8106 0.8151 0.8196 0.8241 0.8286 8 0.8331 0.8361 0.8391 0.8420 0.8450 8 0.8480 0.8510 0.8539 0.8569 0.8599 8 0.8629 0.8658 0.8688 0.8718 0.8748 8 0.8777 0.8807 0.8837 0.8867 0.8896						
8 0.5000 0.5870 0.6284 0.6574 0.6769 8 0.6965 0.7060 0.7155 0.7250 0.7345 8 0.7440 0.7483 0.7526 0.7569 0.7612 8 0.7655 0.7700 0.7745 0.7790 0.7835 8 0.7880 0.7926 0.7971 0.8016 0.8061 8 0.8106 0.8151 0.8196 0.8241 0.8286 8 0.8331 0.8361 0.8391 0.8420 0.8450 8 0.8480 0.8510 0.8539 0.8569 0.8599 8 0.8629 0.8658 0.8688 0.8718 0.8748 8 0.8777 0.8807 0.8837 0.8867 0.8896						
8 0.6965 0.7060 0.7155 0.7250 0.7345 8 0.7440 0.7483 0.7526 0.7569 0.7612 8 0.7655 0.7700 0.7745 0.7790 0.7835 8 0.7880 0.7926 0.7971 0.8016 0.8061 8 0.8106 0.8151 0.8196 0.8241 0.8286 8 0.8331 0.8361 0.8391 0.8420 0.8450 8 0.8480 0.8510 0.8539 0.8569 0.8599 8 0.8629 0.8658 0.8688 0.8718 0.8748 8 0.8777 0.8807 0.8837 0.8867 0.8896						
8 0.7440 0.7483 0.7526 0.7569 0.7612 8 0.7655 0.7700 0.7745 0.7790 0.7835 8 0.7880 0.7926 0.7971 0.8016 0.8061 8 0.8106 0.8151 0.8196 0.8241 0.8286 8 0.8331 0.8361 0.8391 0.8420 0.8450 8 0.8480 0.8510 0.8539 0.8569 0.8599 8 0.8629 0.8658 0.8688 0.8718 0.8748 8 0.8777 0.8807 0.8837 0.8867 0.8896						
8 0.7655 0.7700 0.7745 0.7790 0.7835 8 0.7880 0.7926 0.7971 0.8016 0.8061 8 0.8106 0.8151 0.8196 0.8241 0.8286 8 0.8331 0.8361 0.8391 0.8420 0.8450 8 0.8480 0.8510 0.8539 0.8569 0.8599 8 0.8629 0.8658 0.8688 0.8718 0.8748 8 0.8777 0.8807 0.8837 0.8867 0.8896						
80.78800.79260.79710.80160.806180.81060.81510.81960.82410.828680.83310.83610.83910.84200.845080.84800.85100.85390.85690.859980.86290.86580.86880.87180.874880.87770.88070.88370.88670.8896						
80.81060.81510.81960.82410.828680.83310.83610.83910.84200.845080.84800.85100.85390.85690.859980.86290.86580.86880.87180.874880.87770.88070.88370.88670.8896						
80.83310.83610.83910.84200.845080.84800.85100.85390.85690.859980.86290.86580.86880.87180.874880.87770.88070.88370.88670.8896						
80.84800.85100.85390.85690.859980.86290.86580.86880.87180.874880.87770.88070.88370.88670.8896						
80.86290.86580.86880.87180.874880.87770.88070.88370.88670.8896						
8 0.8777 0.8807 0.8837 0.8867 0.8896						
8 0.8926 0.8956 0.8986 0.9015 0.9045						
	8	0.8926	0.8956	0.8986	0.9015	0.9045

******	******	80-80 LIST O	F INPUT DATA	(CONTINUED)	******
8	0.9075	0.9105	0.9135	0.9164	0.9194
8	0.9224	0.9237	0.9250	0.9263	0.9276

			TROOUT DAT		
8	0.9288	0.9301	TR200UT.DAT 0.9314	0.9327	0.9340
8	0.9353	0.9366	0.9379	0.9392	0.9340
8	0.9418	0.9431	0.9444	0.9457	0.9403
8	0.9483	0.9495	0.9508	0.9521	0.9534
8	0.9547	0.9560	0.9573	0.9586	0.9599
o 8	0.9612	0.9625	0.9638	0.9651	0.9599
o 8	0.9612	0.9625	0.9702	0.9715	0.9664
8 8	0.9741	0.9754	0.9767	0.9715	0.9728
o 8	0.9806	0.9819	0.9832	0.9845	0.9795
o 8	0.9871	0.9819	0.9897	0.9909	0.9858
o 8	0.9871	0.9948	0.9961	0.9909 0.9974	0.9922
o 8		1.0000			
° 9 ENDTBL	1.0000	1.0000	1.0000	1.0000	1.0000
5 RAINFL 6		.1			
8	0.0000	0.0014	0.0027	0.0041	0.0054
8	0.0068	0.0082	0.0095	0.0109	0.0122
8	0.0136	0.0150	0.0163	0.0177	0.0122
8	0.0204	0.0217	0.0231	0.0245	0.0150
8	0.0272	0.0285	0.0299	0.0313	0.0238
8	0.0340	0.0353	0.0367	0.0381	0.0320
8	0.0408	0.0421	0.0435	0.0449	0.0394
8	0.0476	0.0421	0.0503	0.0516	0.0402
8	0.0544	0.0557	0.0571	0.0584	0.0598
8	0.0612	0.0625	0.0639	0.0652	0.0666
8	0.0680	0.0693	0.0707	0.0720	0.0734
8	0.0748	0.0761	0.0775	0.0788	0.0802
8	0.0816	0.0846	0.0877	0.0908	0.0939
8	0.0970	0.1001	0.1032	0.1063	0.1094
8	0.1125	0.1156	0.1187	0.1218	0.1094
8	0.1280	0.1311	0.1342	0.1373	0.1404
8	0.1435	0.1466	0.1497	0.1528	0.1559
8	0.1590	0.1621	0.1652	0.1683	0.1714
8	0.1745	0.1791	0.1837	0.1883	0.1929
8	0.1975	0.2021	0.2068	0.2114	0.2160
8	0.2206	0.2252	0.2298	0.2344	0.2390
8	0.2437	0.2481	0.2525	0.2569	0.2613
8	0.2657	0.2753	0.2849	0.2945	0.3041
8	0.3137	0.3332	0.3527	0.3810	0.4202
8	0.5000	0.5798	0.6190	0.6473	0.6668
8	0.6863	0.6959	0.7055	0.7151	0.7247
8	0.7343	0.7387	0.7431	0.7475	0.7519
8	0.7563	0.7610	0.7656	0.7702	0.7748
8	0.7794	0.7840	0.7886	0.7932	0.7979
8	0.8025	0.8071	0.8117	0.8163	0.8209
8	0.8255	0.8286	0.8317	0.8348	0.8379
8	0.8410	0.8441	0.8472	0.8503	0.8534
8	0.8565	0.8596	0.8627	0.8658	0.8689
8	0.8720	0.8751	0.8782	0.8813	0.8844
2					

>	****	80-80 LIST O	F INPUT DATA	(CONTINUED)	******
8	0.8875	0.8906	0.8937	0.8968	0.8999
8	0.9030	0.9061	0.9092	0.9123	0.9154
8	0.9184	0.9198	0.9212	0.9225	0.9239
8	0.9252	0.9266	0.9280	0.9293	0.9307
8	0.9320	0.9334	0.9348	0.9361	0.9375
8	0.9388	0.9402	0.9416	0.9429	0.9443
8	0.9456	0.9470	0.9484	0.9497	0.9511
8	0.9524	0.9538	0.9551	0.9565	0.9579
8	0.9592	0.9606	0.9619	0.9633	0.9647
8	0.9660	0.9674	0.9687	0.9701	0.9715
8	0.9728	0.9742	0.9755	0.9769	0.9783
8	0.9796	0.9810	0.9823	0.9837	0.9850
8	0.9864	0.9878	0.9891	0.9905	0.9918
8	0.9932	0.9946	0.9959	0.9973	0.9986
8	1.0000	1.0000	1.0000	1.0000	1.0000
9	ENDTBL				
5	RAINFL 7	.1			
8	0.0000	0.0014	0.0028	0.0043	0.0057
8	0.0071	0.0085	0.0100	0.0114	0.0128
8	0.0142	0.0156	0.0171	0.0185	0.0199
8	0.0213	0.0227	0.0242	0.0256	0.0270
8	0.0284	0.0299	0.0313	0.0327	0.0341
8	0.0355	0.0370	0.0384	0.0398	0.0412
8	0.0426	0.0441	0.0455	0.0469	0.0483
8	0.0498	0.0512	0.0526	0.0540	0.0554
8	0.0569	0.0583	0.0597	0.0611	0.0625
8	0.0640	0.0654	0.0668	0.0682	0.0697
8	0.0711	0.0725	0.0739	0.0753	0.0768
8	0.0782	0.0796	0.0810	0.0825	0.0839
8	0.0853	0.0885	0.0918	0.0950	0.0983
8	0.1015	0.1048	0.1080	0.1113	0.1145
8	0.1177	0.1210	0.1242	0.1275	0.1307
8	0.1340	0.1372	0.1405	0.1437	0.1470
8	0.1502	0.1534	0.1567	0.1599	0.1632
8	0.1664	0.1697	0.1729	0.1762	0.1794
8	0.1827	0.1874	0.1921	0.1968	0.2015
8 8	0.2062	0.2109	0.2156	0.2203 0.2439	0.2251
8 8	0.2298	0.2345	0.2392		0.2486 0.2710
8 8	0.2533 0.2754	0.2577 0.2851	0.2622 0.2948	0.2666 0.3044	0.2710 0.3141
8 8	0.3238	0.2851	0.2948	0.3898	0.4269
8 8	0.5000	0.5431	0.5624		0.6569
ō	0.3000	0.3/31	0.0102	0.6376	2000.0

			TR200UT.D/	Α Τ	
8	0.6762	0.6859	0.6956	0.7052	0.7149
8	0.7246	0.7290	0.7334	0.7378	0.7423
8	0.7467	0.7514	0.7561	0.7608	0.7655
8	0.7702	0.7749	0.7797	0.7844	0.7891
8	0.7938	0.7985	0.8032	0.8079	0.8126
8	0.8173	0.8206	0.8238	0.8271	0.8303
8	0.8336	0.8368	0.8401	0.8433	0.8466
8	0.8498	0.8530	0.8563	0.8595	0.8628
1					

8	3	0.8660	0.8693	0.8725	0.8758	0.8790
8	3	0.8823	0.8855	0.8887	0.8920	0.8952
8	}	0.8985	0.9017	0.9050	0.9082	0.9115
8	}	0.9147	0.9161	0.9175	0.9190	0.9204
8	}	0.9218	0.9232	0.9247	0.9261	0.9275
8	}	0.9289	0.9303	0.9318	0.9332	0.9346
8	3	0.9360	0.9375	0.9389	0.9403	0.9417
8	3	0.9431	0.9446	0.9460	0.9474	0.9488
8	3	0.9502	0.9517	0.9531	0.9545	0.9559
8	3	0.9574	0.9588	0.9602	0.9616	0.9630
8		0.9645	0.9659	0.9673	0.9687	0.9701
8	3	0.9716	0.9730	0.9744	0.9758	0.9773
8	3	0.9787	0.9801	0.9815	0.9829	0.9844
8		0.9858	0.9872	0.9886	0.9900	0.9915
8		0.9929	0.9943	0.9957	0.9972	0.9986
8	3	1.0000	1.0000	1.0000	1.0000	1.0000
9	ENDTBL					
5	6 RAINFL 8		.1			
8		0.0000	0.0016	0.0031	0.0047	0.0063
8		0.0079	0.0094	0.0110	0.0126	0.0141
8		0.0157	0.0173	0.0188	0.0204	0.0220
8		0.0236	0.0251	0.0267	0.0283	0.0298
8		0.0314	0.0330	0.0345	0.0361	0.0377
8		0.0393	0.0408	0.0424	0.0440	0.0455
8		0.0471	0.0487	0.0502	0.0518	0.0534
8		0.0550	0.0565	0.0581	0.0597	0.0612
8		0.0628	0.0644	0.0659	0.0675	0.0691
8		0.0707	0.0722	0.0738	0.0754	0.0769
8		0.0785	0.0801	0.0816	0.0832	0.0848
8		0.0864	0.0879	0.0895	0.0911	0.0926
8		0.0942	0.0978	0.1014	0.1050	0.1086
8		0.1122	0.1158	0.1193	0.1229	0.1265
8		0 1 2 0 1	0 1007	0.1373	0.1409	0 1445
		0.1301	0.1337			0.1445
8		0.1301 0.1481	0.1337 0.1516	0.1575	0.1409	0.1445 0.1624

								TD222.	T D					
~		0 100	^			0 1 6 0 4	-	TR200U		0 1700	~	1004		
8		0.166				0.1696		0.1732		0.1768		.1804		
8		0.184				0.1875		0.1911		0.1947		.1983		
8						0.2069		0.2118		0.2168		.2217		
8		0.226				0.2316		0.2365		0.2415		.2464		
8		0.251				0.2563		0.2613		0.2662		.2712		
8		0.276				0.2806		0.2851		0.2896		.2941		
8 8		0.298				0.3083		0.3181		0.3279		.3377		
		0.347				0.3666		0.3845		0.4095		.4414		
8		0.500				0.5586		0.5905		0.6155		.6340		
8		0.652				0.6623		0.6721		0.6819		.6917		
8		0.701				0.7059		0.7104		0.7149		.7194		
8		0.723				0.7288		0.7338		0.7387		.7437		
8		0.748				0.7536		0.7585		0.7635		.7684		
8		0.773				0.7783		0.7832		0.7882		.7931		
8		0.798				0.8017		0.8053		0.8089		.8125		
8		0.816	0			0.8196	5	0.8232	2	0.8268	e	.8304		
1														
ماد باد	د عاد عاد عاد عاد عاد عاد عاد عاد عا	و ماد ماد ماد ماد ما		م ماد ما	~~	00 1 7						بلد عاد عاد عاد عاد عاد	و ماد ماد ماد ماد ماد ماد ماد م	ماد ماد ماد ماد
***	********	* * * * * * *	**	**{	30.	-80 LIS	SI OF .	INPUIL	DAIA (0		=D)****	* * * * * * *	* * * * * * * * * *	* * * *
~		0 0 0 4	^			0 0 77	-	0 0412	`	0 0440	~	0404		
8		0.834				0.8376		0.8412		0.8448		.8484		
8		0.851				0.8555		0.8591		0.8627		.8663		
8		0.869				0.8735		0.8771		0.8807		.8842		
8		0.887				0.8914		0.8950		0.8986		.9022		
8		0.905				0.9074		0.9089		0.9105		.9121		
8		0.913				0.9152		0.9168		0.9184		.9199		
8		0.921				0.9231		0.9246		0.9262		.9278		
8		0.929				0.9309		0.9325		0.9341		.9356		
8		0.937				0.9388		0.9403		0.9419		.9435		
8		0.945				0.9466		0.9482		0.9498		.9513		
8		0.952				0.9545		0.9560		0.9576		.9592		
8		0.960				0.9623		0.9639		0.9655		.9670		
8		0.968				0.9702		0.9717		0.9733		.9749		
8		0.976				0.9786		0.9796		0.9812		.9827		
8		0.984				0.9859		0.9874		0.9890		.9906		
8		0.992				0.9937		0.9953		0.9969		.9984		
8		1.000	0			1.0000)	1.0000)	1.0000	1	.0000		
	ENDTBL	_						_		_				
	RUNOFF 1	5			1		0.041		91.31		0.300			
	RUNOFF 1	6			2		1.4030	0	84.309	9	2.418			
	ADDHYD 4	1		2										
	REACH 3	3	3		1		1016.0							
	RUNOFF 1	4			2		0.024	0	85.53	5	1.126			
	ADDHYD 4	2	1	2	3						1	-	1	
	DIMHYD					0.02								
8		0.000				0.111		0.356		0.655	e	.896		
									4.0					

Page 10

					TF	R200UT.	DAT							
8		1.0	90	0.929	0	.828		0.737	0	.65	6			
8		0.5	84	0.521	0	.465		0.415	0	.37	1			
8		0.3	31	0.296	0	.265		0.237	0	.21	2			
8		0.1	90	0.170	0	.153		0.138	0	.12	3			
8		0.1	09	0.097	0	.086		0.076	0	.06	6			
8		0.0	57	0.049	0	.041		0.033	0	.02	7			
8				0.021		.018		0.015		.01				
8		0.0		0.011		.009		0.008		.00				
8				0.006				0.005		.00				
	ENDTBL								-		-			
-														
	ENDATA													
7	INCREM 6				0.1									
	COMPUT 7		2		0.0		2.65	5	1.01	2	1	1		
	ENDCMP 1													
7	COMPUT 7		2		0.0		3.20)	1.02	2	1	2		
-	ENDCMP 1		_							_	_	_		
7	COMPUT 7		2		0.0		4.12)	1.03	2	1	3		
,	ENDCMP 1		-		0.0			-	2.05	-	-	2		
7	COMPUT 7		2		0.0		4.92	,	1.04	2	1	4		
,	ENDCMP 1		-		0.0		1.52	•	1.01	-	-	•		
7	COMPUT 7		2		0.0		6.14	L	1.05	2	1	5		
,	ENDCMP 1		-		0.0		0.1		1.05	-	-	5		
7	COMPUT 7		2		0.0		7.23	2	1.06	2	1	6		
,	ENDCMP 1		2		0.0		1.25		1.00	2	-	0		
1														
-														
***	******	****	*****80	-80 LIST	OF IN	IPUT DAT	A (C	ONTINUED)****:	***	****	****	****	**
7	COMPUT 7	5	2		0.0		8.47	,	1.07	2	1	7		
•	ENDCMP 1		-				••••			-	-	-		
7	COMPUT 7		2		0.0	1	1.99)	1.08	2	1	8		
,	ENDCMP 1		-		0.0	-				-	-	0		
	ENDJOB 2													
***	******	****	******	*******E	ND OF	80-80	LIST	*******	*****	***	****	****	****	**
1														
	20												- scs	5 -
						95 ETL							VERSI	
04	/12/**					ly Run							.04TE	
	:22:56			PASS		JOB N	ю.	1						1
					_			-						-

COMPUTED DIMHYD PEAK RATE FACTOR = 282.026

EXECUTIVE CONTROL INCREM MAIN TIME INCREMENT = .100 HOURS EXECUTIVE CONTROL COMPUT FROM XSECTION 5 TO XSECTION 2 STARTING TIME = .00 RAIN DEPTH = 2.65 RAIN DURATION = 1.00 ANT. RUNOFF COND. = 2MAIN TIME INCREMENT = .100 HOURSALTERNATE NO. = 1STORM NO. = 1RAIN TABLE RAIN TABLE NO. = 1OPERATION ADDHYD XSECTION 2 PEAK TIME(HRS)PEAK DISCHARGE(CFS)PEAK ELEVATION(FEET) 194.6 13.62 (NULL) RUNOFF ABOVE BASEFLOW (BASEFLOW = .00 CFS) 1.27 WATERSHED INCHES; 1203 CFS-HRS; 99.4 ACRE-FEET. EXECUTIVE CONTROL ENDCMP COMPUTATIONS COMPLETED FOR PASS 1 EXECUTIVE CONTROL COMPUT
STARTING TIME = .00FROM XSECTION 5 TO XSECTION 2
RAIN DEPTH = 3.20RAIN DURATION = 1.00 ANT. RUNOFF COND. = 2MAIN TIME INCREMENT = .100 HOURSALTERNATE NO. = 1STORM NO. = 2RAIN TABLE RAIN TABLE NO. = 2OPERATION ADDHYD XSECTION 2 PEAK TIME(HRS)PEAK DISCHARGE(CFS)PEAK ELEVATION(FEET) 13.60 270.4 (NULL) RUNOFF ABOVE BASEFLOW (BASEFLOW = .00 CFS) 1.72 WATERSHED INCHES; 1632 CFS-HRS; 134.9 ACRE-FEET. EXECUTIVE CONTROL ENDCMP COMPUTATIONS COMPLETED FOR PASS 2 1 TR20 ----- SCS -I-95 ETL Lilly Run VERSION 04/12/** 2.04TEST PASS 3 JOB NO. 1 14:22:56 PAGE 2 EXECUTIVE CONTROL COMPUT FROM XSECTION 5 TO XSECTION 2

ANT. RUNOFF COND. = 2 ALTERNATE NO. = 1	TR20OUT.DAT MAIN TIME INCREMENT = STORM NO. = 3	.100 HOURS RAIN TABLE NO. = 3
OPERATION ADDHYD XSECTION	2	
PEAK TIME(HRS) 13.58	PEAK DISCHARGE(CFS) 396.2	PEAK ELEVATION(FEET) (NULL)
	BASEFLOW = .00 CFS) RSHED INCHES; 2391 CFS-H	RS; 197.6 ACRE-FEET.
EXECUTIVE CONTROL ENDCMP	COMPUTATIONS COMPLETED FOR	PASS 3
STARTING TIME = .00 ANT. RUNOFF COND. = 2	FROM XSECTION 5 TO XSEC RAIN DEPTH = 4.92 MAIN TIME INCREMENT = STORM NO. = 4	RAIN DURATION = 1.00 .100 HOURS
OPERATION ADDHYD XSECTION	2	
PEAK TIME(HRS) 13.58	PEAK DISCHARGE(CFS) 500.8	PEAK ELEVATION(FEET) (NULL)
	BASEFLOW = .00 CFS) RSHED INCHES; 3078 CFS-H	
EXECUTIVE CONTROL ENDCMP	COMPUTATIONS COMPLETED FOR	PASS 4
STARTING TIME = .00 ANT. RUNOFF COND. = 2	FROM XSECTION 5 TO XSEC RAIN DEPTH = 6.14 MAIN TIME INCREMENT = STORM NO. = 5	RAIN DURATION = 1.00 .100 HOURS
OPERATION ADDHYD XSECTION 1		
TR20 04/12/** 14:22:56	I-95 ETL Lilly Run PASS 5 JOB NO. 1	VERSION 2.04TEST PAGE 3

PEAK TIME(HRS) 13.57	TR20OUT.DAT PEAK DISCHARGE(CFS) 652.7	PEAK ELEVATION(FEET) (NULL)
	(BASEFLOW = .00 CFS) TERSHED INCHES; 4153 CFS	
EXECUTIVE CONTROL ENDCMP	COMPUTATIONS COMPLETED FO	OR PASS 5
STARTING TIME = .00	FROM XSECTION 5 TO XSI RAIN DEPTH = 7.23 MAIN TIME INCREMENT = STORM NO. = 6	RAIN DURATION = 1.00
OPERATION ADDHYD XSECTIO		
PEAK TIME(HRS) 13.57	PEAK DISCHARGE(CFS) 780.6	PEAK ELEVATION(FEET) (NULL)
	(BASEFLOW = .00 CFS) TERSHED INCHES; 5133 CFS	-HRS; 424.2 ACRE-FEET.
EXECUTIVE CONTROL ENDCMP	COMPUTATIONS COMPLETED FO	OR PASS 6
STARTING TIME = .00 ANT. RUNOFF COND. = 2	FROM XSECTION 5 TO XSI RAIN DEPTH = 8.47 MAIN TIME INCREMENT = STORM NO. = 7	RAIN DURATION = 1.00 .100 HOURS
OPERATION ADDHYD XSECTIO	DN 2	
PEAK TIME(HRS) 13.56	PEAK DISCHARGE(CFS) 918.3	PEAK ELEVATION(FEET) (NULL)
6.61 WAT	(BASEFLOW = .00 CFS) TERSHED INCHES; 6262 CFS	-HRS; 517.5 ACRE-FEET.
1 TR20		SCS -
04/12/** 14:22:56	I-95 ETL Lilly Run PASS 8 JOB NO. 1	VERSION 2.04TEST PAGE 4

EXECUTIVE CONTROL ENDCMP	COMPUTATIONS C	COMPLETED FOR	PASS	7	
EXECUTIVE CONTROL COMPUT STARTING TIME = .00 ANT. RUNOFF COND. = 2 ALTERNATE NO. = 1	RAIN DEPTH	= 11.99	RAIN D	URATION =	= 1.00 = 8
OPERATION ADDHYD XSECTI	ION 2				
PEAK TIME(HRS) 13.57	PEAK DISCHAF 1267.3	RGE(CFS)		K ELEVATI (NULL)	ON(FEET)
RUNOFF ABOVE BASEFLOW 10.04 WA	(BASEFLOW = . ATERSHED INCHES;		IRS;	786.1 ACF	E-FEET.
EXECUTIVE CONTROL ENDCMP					
TR20 04/12/** 14:22:56	I-95 ET Lilly Ru SUMMARY, JOB	٢L			VERSION 2.04TEST PAGE 5
	SUMMARY TABLE				
SELECTED RESULTS OF ST A CHARACTER FOLLOWING F-FLAT TOP HYDROGRAPH	THE PEAK DISCHARG	IVE CONTROL GE TIME AND F	RATE (CFS) INDICAT	ES:
XSECTION/ STANDARD				SCHARGE	
STRUCTURE CONTROL DF ID OPERATION		ELEVATION	TIME	RATE	RATE
RAINFALL OF 2.65 inches RAINTABLE NUMBER 1, A MAIN TIME INCREMENT .10	ARC 2	JRATION, BEGI	INS AT	.0 hrs.	
ALTERNATE 1 STORM	1 1				
XSECTION 2 ADDHYD	1.47 1.27		13.62	195	132.7
RAINFALL OF 3.20 inches RAINTABLE NUMBER 2, A	ARC 2		INS AT	.0 hrs.	
	Page	15			

ALTERNATE 1 STORM 2 -----XSECTION 2 ADDHYD 1.47 1.72 --- 13.60 270 183.7 RAINFALL OF 4.12 inches AND 24.00 hr DURATION, BEGINS AT .0 hrs. RAINTABLE NUMBER 3, ARC 2 ALTERNATE 1 STORM 3 ------XSECTION 2 ADDHYD 1.47 2.52 --- 13.58 396 269.4 RAINFALL OF 4.92 inches AND 24.00 hr DURATION, BEGINS AT .0 hrs. RAINTABLE NUMBER 4, ARC 2 ALTERNATE 1 STORM 4 XSECTION 2 ADDHYD 1.47 3.25 --- 13.58 501 340.8 RAINFALL OF 6.14 inches AND 24.00 hr DURATION, BEGINS AT .0 hrs. RAINTABLE NUMBER 5, ARC 2 ALTERNATE 1 STORM 5 -----XSECTION 2 ADDHYD 1.47 4.38 --- 13.57 653 444.2 1 TR20 ----- SCS -I-95 ETL VERSION 04/12/** Lilly Run 2.04TEST SUMMARY, JOB NO. 1 14:22:56 PAGE 6 SUMMARY TABLE 1 -----SELECTED RESULTS OF STANDARD AND EXECUTIVE CONTROL IN ORDER PERFORMED. A CHARACTER FOLLOWING THE PEAK DISCHARGE TIME AND RATE (CFS) INDICATES: F-FLAT TOP HYDROGRAPH T-TRUNCATED HYDROGRAPH R-RISING TRUNCATED HYDROGRAPH XSECTION/ STANDARD PEAK DISCHARGE STRUCTURE CONTROL DRAINAGE RUNOFF -----TIME RATE RATE (HR) (CFS) (CSM) ID OPERATION AREA AMOUNT ELEVATION (SQ MI) (IN) (FT) RAINFALL OF 7.23 inches AND 24.00 hr DURATION, BEGINS AT .0 hrs. RAINTABLE NUMBER 6, ARC 2

Page 16

ALTERNATE 1 STORM 6

XSECT	TION 2	2 ADDH	IYD	1.47	5.42		13.5	7 7	81 !	531.3
			′inches 7, A		24.00 hr	DURATION,	BEGINS A	T.0	hrs.	
AL	LTERNATI	1	STORM	7						
XSECT	TION 2	2 ADDH	IYD	1.47	6.61		13.5	69	18 (624.5
			inches 8, A		24.00 hr	DURATION,	BEGINS A	T.0	hrs.	
AL	LTERNATI	E 1	STORM	8						
 XSECT 1	TION 2	2 ADDH	IYD	1.47	10.04		13.5	7 12	67 8	861.9
TR20 04/12	2/** 2:56				I-95 Lilly	ETL Run OB NO. 1			2	- SCS - VERSION .04TEST AGE 7
				 IN RE		 NG IN ORDE				
) AFTER	IN REA : OUT LEN ATT	ACH ROUTI FLOW PEAK GTH FACTO -KIN COEF		MBER ROUT K* GREATE C GREATER	ING ITER R THAN THAN 0.	1.0; 667.	USED;
QUE	ESTION M	MARK (?) AFTER HYDRO	IN REAL IN REAL LENG ATT GRAPH	ACH ROUTI FLOW PEAK GTH FACTO -KIN COEF INFORMAT	NG IN ORDE - MAX. NU R - VALUE F - VALUE ION	MBER ROUT K* GREATE C GREATER ROUTIN	ING ITER R THAN THAN Ø. G PARAME	1.0; 667. TERS	
QUE	REACH LENGTH	FLOOD PLAIN LENGTH) AFTER HYDRO INFL	IN RE, IN RE, LEN ATT GRAPH OW TIME	ACH ROUTI FLOW PEAK GTH FACTO -KIN COEF INFORMAT OUTF PEAK	 NG IN ORDE - MAX. NU R - VALUE F - VALUE ION	MBER ROUT K* GREATER C GREATER ROUTING Q-A EQ. EFF POWER	ING ITER R THAN THAN Ø. G PARAME LENGTH FACTOR	1.0; 667. TERS PEAK RATIO Q/I	ATT- KIN COEFF
QUE XSEC ID	REACH LENGTH	FLOOD PLAIN LENGTH (FT)	HYDRO HYDRO INFL PEAK (CFS)	IN RE, IN RE, LEN ATT GRAPH OW TIME	ACH ROUTI FLOW PEAK GTH FACTO -KIN COEF INFORMAT OUTF PEAK	NG IN ORDE - MAX. NU R - VALUE F - VALUE ION LOW TIME CC	MBER ROUT K* GREATER C GREATER ROUTING Q-A EQ. EFF POWER	ING ITER R THAN THAN Ø. G PARAME LENGTH FACTOR	1.0; 667. TERS PEAK RATIO Q/I	ATT- KIN COEFF
QUE XSEC ID BASEF	REACH LENGTH (FT) FLOW IS	FLOOD PLAIN LENGTH (FT) .0	HYDRO HYDRO INFL PEAK (CFS)	IN REA IN REA OUT ATT GRAPH OW IN TIME (HR)	ACH ROUTI FLOW PEAK GTH FACTO -KIN COEF INFORMAT OUTF PEAK	NG IN ORDE - MAX. NU R - VALUE F - VALUE ION LOW TIME CC	MBER ROUT K* GREATER C GREATER ROUTING Q-A EQ. EFF POWER	ING ITER R THAN THAN Ø. G PARAME LENGTH FACTOR	1.0; 667. TERS PEAK RATIO Q/I	ATT- KIN COEFF
QUE XSEC ID BASEF AL	REACH LENGTH (FT) FLOW IS	FLOOD PLAIN LENGTH (FT) .0	HYDRO HYDRO INFL PEAK (CFS) CFS STORM	IN REA IN REA LENG ATT GRAPH OW TIME (HR)	ACH ROUTI FLOW PEAK GTH FACTO -KIN COEF INFORMAT OUTF PEAK (CFS)	NG IN ORDE - MAX. NU R - VALUE F - VALUE ION LOW TIME CC	MBER ROUT K* GREATER C GREATER ROUTING Q-A EQ. PEFF POWER X) (M)	ING ITER R THAN THAN 0. G PARAME LENGTH FACTOR (k*)	1.0; 667. TERS PEAK RATIO Q/I (Q*)	ATT- KIN COEFF (C)
QUE XSEC ID BASEF AL 3	REACH LENGTH (FT) FLOW IS LTERNATE 1017	FLOOD PLAIN LENGTH (FT) .0	HYDRO HYDRO INFL PEAK (CFS) CFS STORM	IN REA IN REA I OUT ATT GRAPH OW TIME (HR) 1 13.6	ACH ROUTI FLOW PEAK GTH FACTO -KIN COEF INFORMAT OUTF PEAK (CFS)	 NG IN ORDE - MAX. NU R - VALUE F - VALUE ION LOW TIME CC (HR) (MBER ROUT K* GREATER C GREATER ROUTING Q-A EQ. PEFF POWER X) (M)	ING ITER R THAN THAN 0. G PARAME LENGTH FACTOR (k*)	1.0; 667. TERS PEAK RATIO Q/I (Q*)	ATT- KIN COEFF (C)
QUE XSEC ID BASEF AL 3	REACH LENGTH (FT) FLOW IS LTERNATE 1017 LTERNATE	FLOOD PLAIN LENGTH (FT) .0 E 1	HYDRO HYDRO INFL PEAK (CFS) CFS STORM 190 STORM	 IN RE/ LEN/ ATT GRAPH OW OW TIME (HR) 1 13.6 2	ACH ROUTI FLOW PEAK GTH FACTO -KIN COEF INFORMAT OUTF PEAK (CFS) 190	 NG IN ORDE - MAX. NU R - VALUE F - VALUE ION LOW TIME CC (HR) (MBER ROUT K* GREATER ROUTING Q-A EQ. PEFF POWER X) (M) 41 1.39	ING ITER R THAN THAN 0. G PARAME LENGTH FACTOR (k*)	1.0; 667. TERS PEAK RATIO Q/I (Q*)	ATT- KIN COEFF (C) 1.00?

TR200UT.DAT ALTERNATE 1 STORM 3 -----3 1017 388 13.6 388 13.6 1.47 1.38 .001 1.000 1.00? ALTERNATE 1 STORM 4 -----3 1017 490 13.6 490 13.6 1.49 1.38 .001 1.000 1.00? ALTERNATE 1 STORM 5 -----3 1017 639 13.6 639 13.6 1.52 1.37 .001 1.000 1.00? ALTERNATE 1 STORM 6 -----3 1017 764 13.6 764 13.6 1.54 1.37 .001 1.000 1.00? ALTERNATE 1 STORM 7 -----3 1017 899 13.6 899 13.6 1.56 1.37 .001 1.000 1.00? ALTERNATE 1 STORM 8 -----3 1017 1242 13.6 1242 13.6 1.60 1.37 .001 1.000 1.00? 1 TR20 ------ SCS -I-95 ETL VERSION 04/12/** Lilly Run 2.04TEST 14:22:56 SUMMARY, JOB NO. 1 PAGE 8

SUMMARY TABLE 3

STORM DISCHARGES (CFS) AT XSECTIONS AND STRUCTURES FOR ALL ALTERNATES QUESTION MARK (?) AFTER: OUTFLOW PEAK - RISING TRUNCATED HYDROGRAPH.

,	NAGE EA STORM NU	MBERS		
ID (SQ	MI) 1	2	3 4	. 5
XSECTION 2 1	.47			
ALTERNATE 1	195	270	396 50	653
	SUMMARY TABL	E 3		
STORM DISCHARGES (FRNATES

STORM DISCHARGES (CFS) AT XSECTIONS AND STRUCTURES FOR ALL ALTERNATES QUESTION MARK (?) AFTER: OUTFLOW PEAK - RISING TRUNCATED HYDROGRAPH.

XSECTION/ STRUCTURE		DRAINAGE AREA	STORM NU	JMBERS		
ID		(SQ MI)	6	7	8	
XSECTION	2	1.47				
ALTERNATE 1	1		781	918	1267	
TR20						SCS -
04/12/**			I-95 Lilly			VERSION 2.04TEST

END OF 1 JOBS IN THIS RUN

SCS TR-20, VERSION 2.04TEST FILES

INPUT = tr20in.dat
OUTPUT = tr20out.dat

, GIVEN DATA FILE , DATED 04/12/**,14:22:56

FILES GENERATED - DATED 04/12/**,14:22:56

FILE trlog.TMG CONTAINS MESSAGE + WARNING INFORMATION

TOTAL NUMBER OF WARNINGS = 16, MESSAGES = 0

*** TR-20 RUN COMPLETED ***

frdischarges.txt Fixed Region Peak Flow Estimates for: Lilly Run I-95 ETL GISHydro Release Version Date: January 8, 2011 Hydro Extension Version Date: January 8, 2011 Analysis Date: April 12, 2019 Geographic Province(s): -Western Coastal Plain (100.0% of area) Q(1.25): 171 cfs Q(1.50): 228 cfs Q(2): 299 cfs

Q(5): 550 cfs Q(10): 809 cfs Q(25): 1290 cfs Q(50): 1780 cfs Q(100): 2420 cfs Q(200): 3240 cfs Q(500): 4690 cfs

Area Weighted Prediction Intervals (from Tasker)

	0			`				
Return	50	PERCENT	67 P	PERCENT	90 P	ERCENT	95 P	ERCENT
Period	lower	upper	lower	upper	lower	upper	lower	upper
1.25	126	231	109	268	82	357	71	413
1.5	172	302	149	347	114	455	100	520
2	231	387	203	440	159	564	140	638
5	410	740	354	856	267	1130	232	1310
10	583	1120	496	1320	363	1800	310	2110
25	894	1860	747	2220	527	3150	442	3750
50	1190	2670	973	3260	661	4800	545	5820
100	1540	3800	1230	4740	801	7300	645	9060
200	1960	5360	1530	6870	946	11100	744	14100
500	2630	8350	1980	11100	1140	19300	867	25400

Individual Province Tasker Analyses Follow: 2016 Maryland Fixed Region Equations v2.1 (10/30/2017)

	Flood frequency estimates for Lilly Run I-95 ETL								
REGION: N	Western Coast	tal Plain							
area=	1.50:imper	rvious area =	45.60:C&D-soils =	66.79 :skew=	0.51				
Return Period	Discharge (cfs)	Standard Error of Prediction (percent)	Equivalent Years of Record	Standard Error of Prediction (logs)					
1.25 1.50	171. 228.	47.3 44.1	2.50 2.54	0.1953 0.1830					

			frdischarges.tx	t
2.00	299.	40.1	3.26	0.1678
5.00	550.	46.4	4.69	0.1916
10.00	809.	51.9	5.78	0.2121
25.00	1290.	58.8	7.11	0.2368
50.00	1780.	66.4	7.50	0.2624
100.00	2420.	75.8	7.51	0.2927
200.00	3240.	87.0	7.33	0.3261
500.00	4690.	104.9	6.95	0.3741

PREDICTION INTERVALS

Return	50 PE	RCENT	67 PE	RCENT	90 PE	RCENT	95 PE	RCENT
Period	lower	upper	lower	upper	lower	upper	lower	upper
1.25	126.	231.	109.	268.	82.	357.	71.	413.
1.50	172.	302.	149.	347.	114.	455.	100.	520.
2.00	231.	387.	203.	440.	159.	564.	140.	638.
5.00	410.	740.	354.	856.	267.	1130.	232.	1310.
10.00	583.	1120.	496.	1320.	363.	1800.	310.	2110.
25.00	894.	1860.	747.	2220.	527.	3150.	442.	3750.
50.00	1190.	2670.	973.	3260.	661.	4800.	545.	5820.
100.00	1540.	3800.	1230.	4740.	801.	7300.	645.	9060.
200.00	1960.	5360.	1530.	6870.	946.	11100.	744.	14100.
500.00	2630.	8350.	1980.	11100.	1140.	19300.	867.	25400.

WARNING -- Prediction beyond observed data WARNING - Impervious area out of range of observed data

	Worksheet for R	each 2	- 3.5'	pipe
Project Description				
Friction Method	Manning Formula			
Solve For	Full Flow Capacity			
Input Data				
Roughness Coefficient		0.024		
Channel Slope		0.00500	ft/ft	
Normal Depth		3.50	ft	
Diameter		3.50	ft	
Discharge		38.53	ft³/s	
Results				
Discharge		38.53	ft³/s	
Normal Depth		3.50	ft	
Flow Area		9.62	ft²	
Wetted Perimeter		11.00	ft	
Hydraulic Radius		0.88	ft	
Top Width		0.00	ft	
Critical Depth		1.93	ft	
Percent Full		100.0	%	
Critical Slope		0.01447	ft/ft	
Velocity		4.01	ft/s	
Velocity Head		0.25	ft	
Specific Energy		3.75	ft	
Froude Number		0.00		
Maximum Discharge		41.45	ft³/s	
Discharge Full		38.53	ft³/s	
Slope Full		0.00500	ft/ft	
Flow Type	SubCritical			
GVF Input Data				
Downstream Depth		0.00	ft	
Length		0.00	ft	
Number Of Steps		0		
GVF Output Data				
Upstream Depth		0.00	ft	
Profile Description				
Profile Headloss		0.00	ft	
Average End Depth Over Rise		0.00	%	

 Bentley Systems, Inc.
 Haestad Methods SoluBientl@efiterrwMaster V8i (SELECTseries 1) [08.11.01.03]

 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666
 Page 1 of 2

Worksheet for Reach 2 - 3.5' pipe

GVF Output Data

Normal Depth Over Rise	100.00	%
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	3.50	ft
Critical Depth	1.93	ft
Channel Slope	0.00500	ft/ft
Critical Slope	0.01447	ft/ft

	Worksheet for	Reach 3	- 2' pipe
Project Description			
Friction Method	Manning Formula		
Solve For	Full Flow Capacity		
Input Data			
Roughness Coefficient		0.024	
Channel Slope		0.00488	ft/ft
Normal Depth		2.00	ft
Diameter		2.00	ft
Discharge		8.56	ft³/s
Results			
Discharge		8.56	ft³/s
Normal Depth		2.00	ft
Flow Area		3.14	ft²
Wetted Perimeter		6.28	ft
Hydraulic Radius		0.50	ft
Top Width		0.00	ft
Critical Depth		1.04	ft
Percent Full		100.0	%
Critical Slope		0.01693	ft/ft
Velocity		2.72	ft/s
Velocity Head		0.12	ft
Specific Energy		2.12	ft
Froude Number		0.00	
Maximum Discharge		9.21	ft³/s
Discharge Full		8.56	ft³/s
Slope Full		0.00488	ft/ft
Flow Type	SubCritical		
GVF Input Data			
Downstream Depth		0.00	ft
Length		0.00	ft
Number Of Steps		0	
GVF Output Data			
Upstream Depth		0.00	ft
Profile Description			
Profile Headloss		0.00	ft
Average End Depth Over Rise		0.00	%

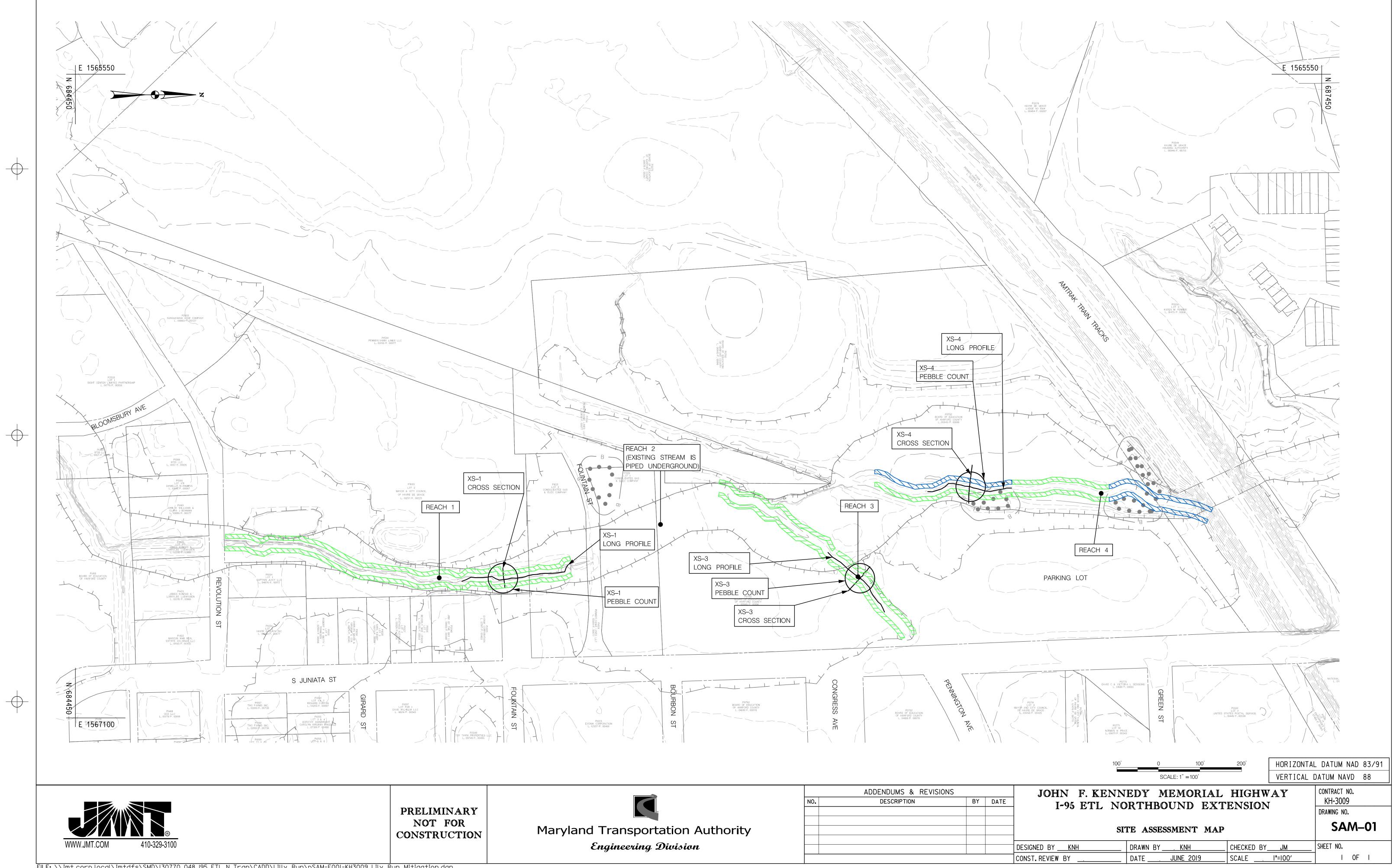
Bentley Systems, Inc. Haestad Methods SoluRicontl@jefitenvMaster V8i (SELECTseries 1) [08.11.01.03]

5/2/2019 11:37:47 AM

27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page

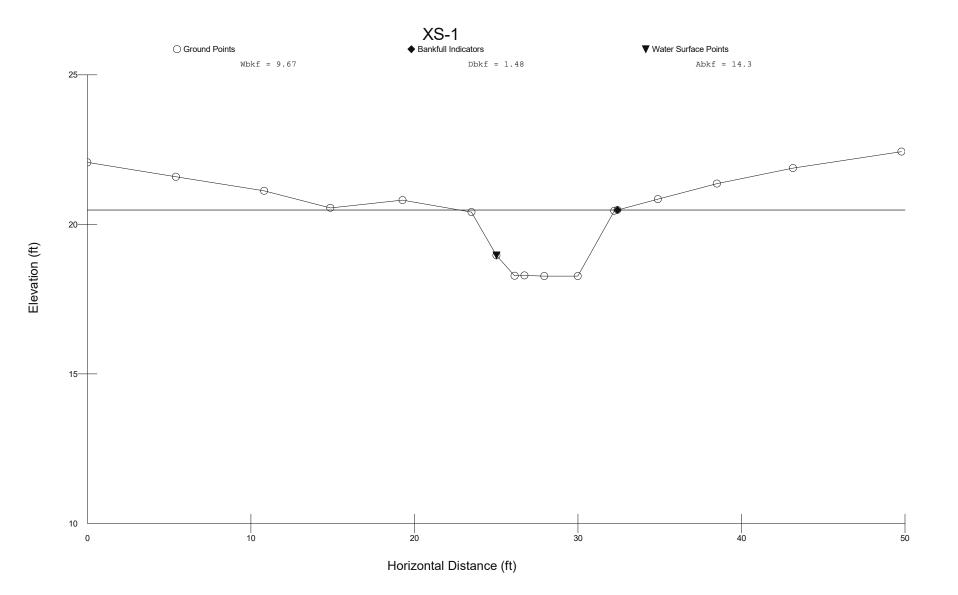
Worksheet for Reach 3 - 2' pipe

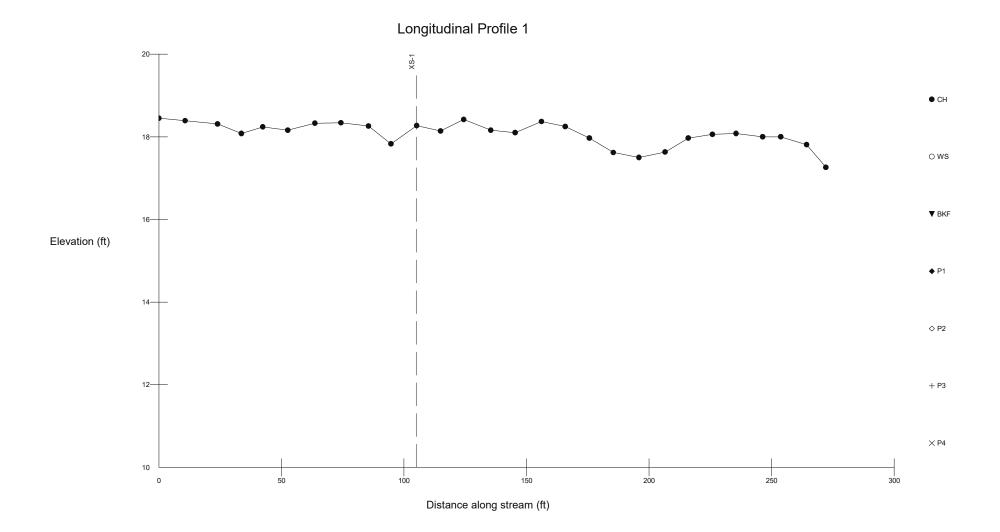
GVF Output Data

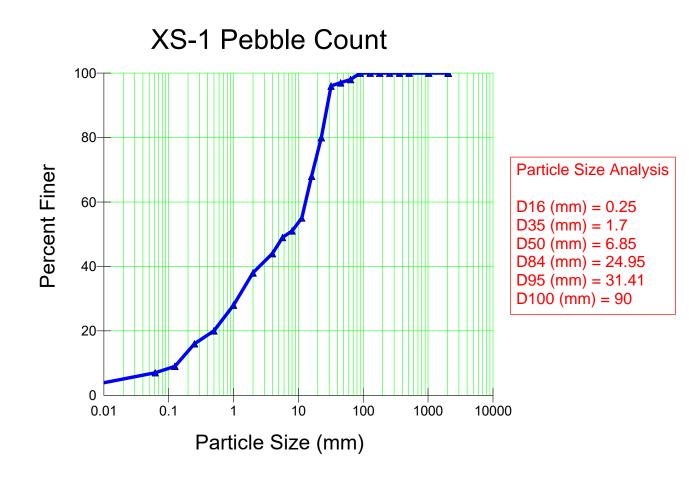

Normal Depth Over Rise	100.00	%
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	2.00	ft
Critical Depth	1.04	ft
Channel Slope	0.00488	ft/ft
Critical Slope	0.01693	ft/ft

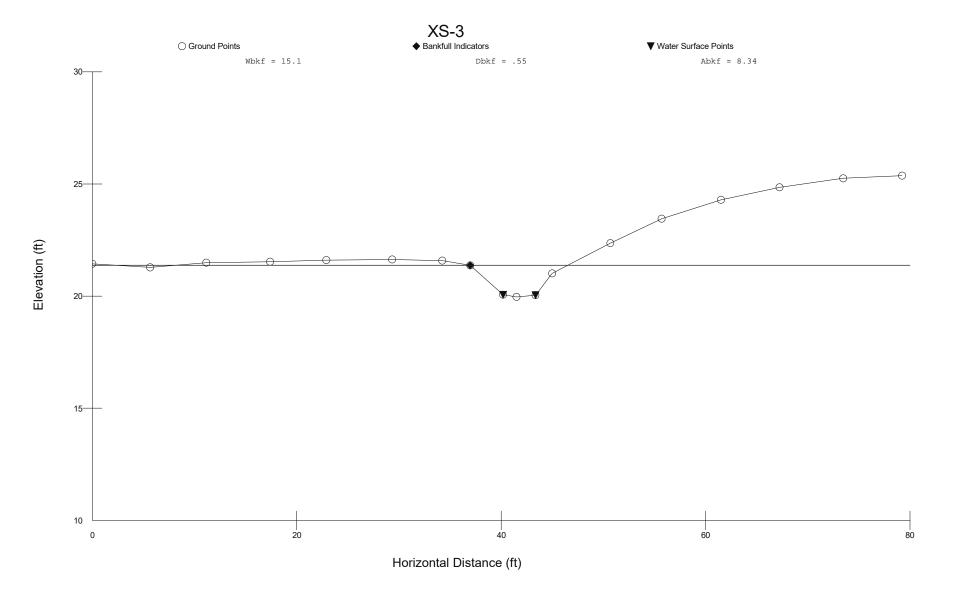
Appendix B

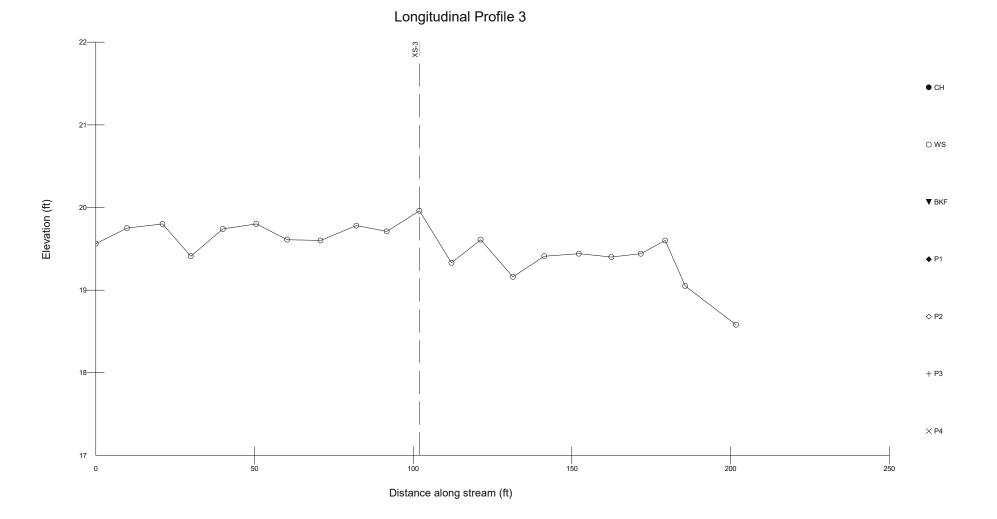
Site Assessment

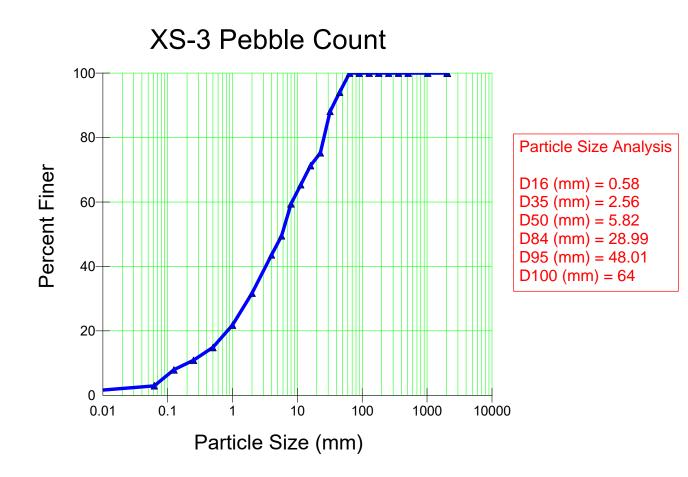


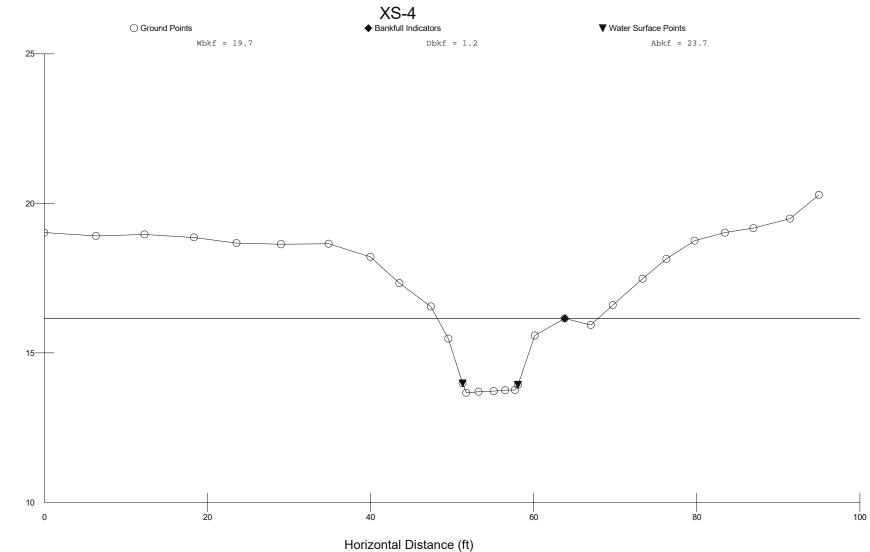


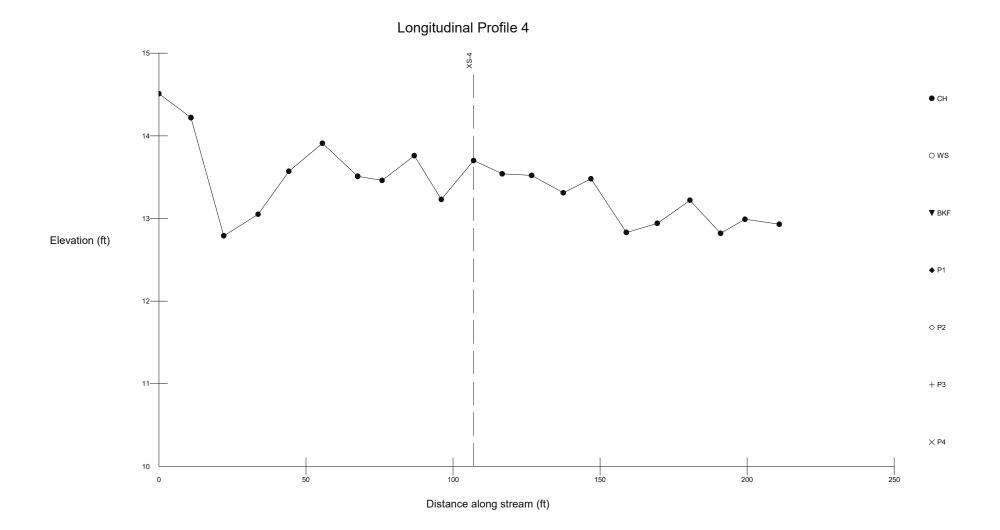

Appendix C

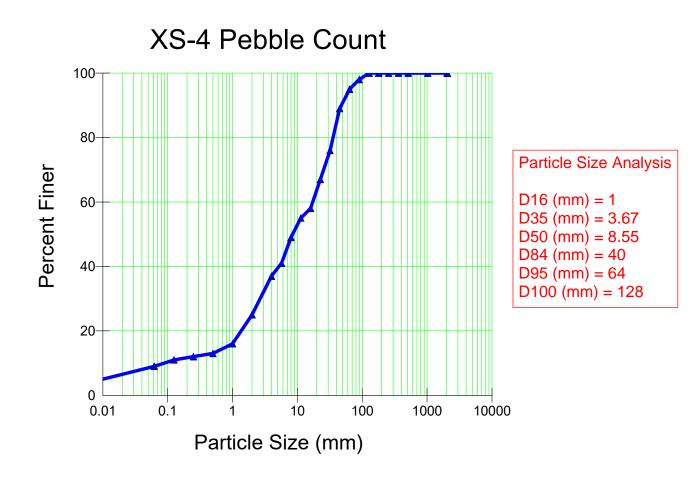

Existing Channel Geomorphic Data

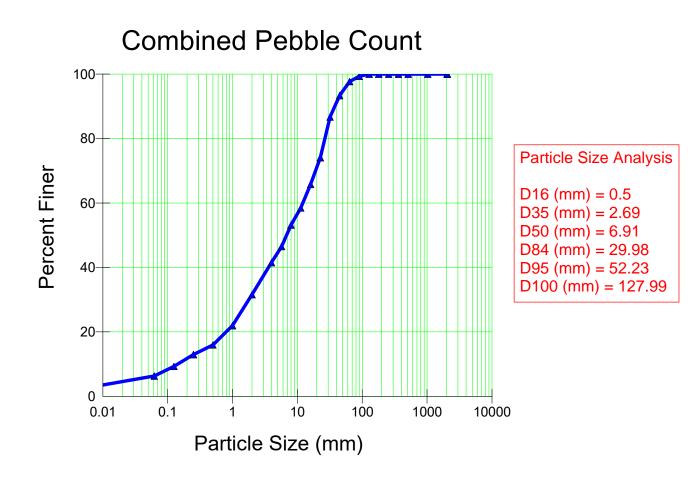












Elevation (ft)

Appendix D Ecological Uplift Data

Worksheet 3-10. Pfankuch (1975) channel stability ra	ng procedure, as modified by Ro	osgen (1996, 2001c, 2006b).
--	---------------------------------	-----------------------------

Stream:	LILLY	Category Excellent							REAC	CH 1				Valley	v Type:			Obs	ervers:	PVC	& KNH				Date: 4/10/2	2019	
Loca-	14	0				Exce	ellent					Go	od					F	air						Poor		
tion	Key	Categ	jory		[Descriptio	n		Rating		C	Descriptio	n		Rating		[Descriptio	n		Rating		D	escrip	otion		Rating
(0	1	Landform slope	n	Bank sl	ope gra	dient <3	0%.		2	Bank sl	ope gra	dient 30	-40%.		4	Bank sl	ope gra	dient 40	-60%.		6	Bank slo	ope gradie	nt > 6	60%.		8
Upper banks	2	Mass erc	osion	No evid erosion		past or	future m	nass	3	Infreque future p		stly heale	ed over	Low	6		nt or larg /earlong		sing sed	iment	9				sing sediment n danger of same		12
pper	3	Debris ja potential		Essenti channe		ent from	ı immedi	iate	2	Present limbs.	, but mo	ostly sma	all twigs	and	4	larger s					6		e to heavy nantly larg				8
n	4	Vegetativ bank protection			t a deep		gor and soil-bind	-	3		or sugg	y. Fewei est less	•		6	fewer s	6 densit pecies f inuous r	rom a s	hallow,	ind	9	vigor inc		or, di	er species and iscontinuous ar		12
	5	Channel capacity		stage. Wi reference	dth/depth	ratio depa	tain the ba arture from 1.0. Bank-		1	Width/dep	th ratio de	ntained wi eparture fr 1.0–1.2. B	rom refere	nce	2	ratio depa	stage is no arture from . Bank-He	n reference	e width/de	pth ratio	3	common w ratio depar	ith flows less	s than l erence	d; over-bank flows bankfull. Width/dep e width/depth ratio > 3.	th	4
nks	6	Bank roc content	:k	12"+ co	mmon.	Ŭ	ar bould		2	cobbles	6–12".	y boulde			4	20–40% class.	6. Most	in the 3-	-6" dian	neter	6	or less.	0		of gravel sizes,	I–3"	8
Lower banks	7	Obstructi to flow	ions		w/o cut		mbedde epositio		2	currents fewer and	and mino d less firr		ing. Obst	ructions	4		ely freque th high flo I filling.				6	Frequent obstruction cause bank erosion traps full, channel mi Almost continuous co			arlong. Sedime	nt	8
Low	8	Cutting		Little or <6".	none. li	nfrequer	nt raw ba	anks	4			ently at aw banl			6	mat ove	ant. Cut erhangs	and slo	ughing	evident.	(12)	traps full, chann			,		16
	9	Depositio	on	Little or point ba		irgemen	t of char	nnel or	4	Some n coarse		increase	e, mostly	y from	8		ate depo arse sar rs.				12				edominantly fin oar developmer		16
	10	Rock angularity	у	-	edges ar s rough		ers. Plan	ie				ers and e th and fl			2	Corners dimens	s and eo ions.	lges we	ll round	ed in 2	3	Well rou smooth.	inded in al	ll dim	ensions, surfac	es	4
	11	Brightnes	SS		es dull, c Ily not b	lark or s right.	tained.		1	Mostly of surfaces		may ha	ve <35%	6 bright	2	Mixture mixture	dull and range.	d bright,	i.e., 35-	-65%	3		inantly brig surfaces.	ght, >	65%, exposed	or	4
E	12	Consolidat particles		Assorte overlap		tightly p	acked o	r	2	Modera overlap		ked with	n some		4	-	loose as nt overla		nt with n	10	6	No pack easily m		nt. Lo	ose assortmen	.,	8
Bottom	13	Bottom s distributio		No size materia	•		t. Stable	•	4	50-80%	.	ft light. S		aterial	8	materia	ate chan Ils 20–5	0%.			12		distribution s 0–20%.	n cha	ange. Stable		16
	14	Scouring depositio		<5% of deposit		affected	l by scou	ur or	6	constric	tions an	d. Scour nd where deposit	e grades		12	at obstr	% affecte ructions, Some fi	constri	ctions a		18		an 50% of hange nea		oottom in a state earlong.	e of	24
	15	Aquatic vegetatio	on		•		-like, da ft water f		1			e forms . Moss h			2	backwa	t but spo ater. Sea rocks sl	asonal a		owth	3				or absent. Yell n may be prese		4
		-				Exc	cellent	total =	23				Good	total =	10				Fair	total =	18				Poor to	al =	16
Stream ty	pe	A1	A2	A3	A4	A5	A6	B1	B2	B3	B4	B5	B6	C1	C2	C3	C4	C5	C6	D3	D4	D5	D6	Γ			67
Good (Stab			38-43	54-90	60-95	60-95	50-80	38-45	38-45	40-60	40-64	48-68	40-60	38-50	38-50	60-85	70-90	70-90	60-85	85-107	85-107	85-107	67-98		Grand total	=	67
Fair (Mod. u	unstable	44-47	44-47	91-129	96-132	96-142	81-110	46-58	46-58	61-78	65-84	69-88	61-78	51-61	51-61	86-105	91-110	91-110	86-105	108-132	108-132	108-132	99-125	Ē	Existing		F4
Poor (Unsta	able)	48+	48+	130+	133+	143+	111+	59+	59+	79+	85+	89+	79+	62+	62+	106+	111+	111+	106+	133+	133+	133+	126+		stream type	e =	14
Stream ty	ре	DA3	DA4	DA5	DA6	E3	E4	E5	E6	F1	F2	F3	F4	F5	F6	G1	G2	G3	G4	G5	G6		ı	Ē	*Potential		C4
Good (Stab	le)	40-63	40-63	40-63	40-63	40-63	50-75	50-75	40-63	60-85	60-85	85-110	85-110	90-115	80-95	40-60	40-60	85-107	85-107	90-112	85-107]			stream type	e =	04
Fair (Mod. ι	unstable	64-86	64-86	64-86	64-86	64-86	76-96	76-96	64-86	86-105	86-105	111-125	111-125	116-130	96-110	61-78	61-78	108-120	108-120	113-125	108-120				Modified	chanr	nel
Poor (Unsta	able)	87+	87+	87+	87+	87+	97+	97+	87+	106+	106+	126+	126+	131+	111+	79+	79+	121+	121+	126+	121+				stability	-	=
																	*Ra	ting is a	djusted	to poter	tial strea	am type,	not existin	g.	Good (Sta	ble)	

Worksheet 3-10. Pfankuch (1975) channel stability ra	ng procedure, as modified by Ro	osgen (1996, 2001c, 2006b).
--	---------------------------------	-----------------------------

Stream:	LILLY	Excellent						cation:	REAC	H 3				Valley	v Type:			Obs	ervers:	PVC	& KNH				Date: 4/10/2)19
Loca-	14	0				Exce	ellent					Go	od						air						Poor	
tion	Key	Categ	jory		[Descriptio	n		Rating		C	Descriptio	n		Rating		[Descriptio	n		Rating			Descr	iption	Rating
<i>(</i>	1	Landforr slope	n	Bank sl	lope gra	dient <3	80%.		2	Bank slo	ope gra	dient 30	-40%.		4	Bank sl	lope gra	dient 40	-60%.		6	Bank sl	ope gra			8
Upper banks	2	Mass ero	osion	No evic erosion		f past or	future m	nass	3	Infreque future po			ed over	. Low	6		nt or lar yearlong	ge, caus J.	sing sed	iment	9				ising sediment ne t danger of same.	arly 12
pper	3	Debris ja potential		Essenti channe		ent from	n immedi	iate	2	Present, limbs.	, but mo	ostly sma	all twigs	and	4	larger s	sizes.	avy am			6	Modera predom				8
n	4	Vegetativ bank protectio			t a deep		gor and soil-bin	-	3	70–90% less vigo root mas	or sugg		•		6	fewer s	pecies f	y. Lowe from a s root mas	hallow,	ind	9		dicating	g poor, o	ver species and le discontinuous and	
	5	Channel capacity		stage. Wi reference	idth/depth	ratio depa	ntain the ba arture from 1.0. Bank-		1	Bankfull st Width/dep width/dept (BHR) = 1.	th ratio de h ratio = 1	eparture fr	om refere	nce	2	ratio depa	arture from	ot containe n reference eight Ratio	e width/de	pth ratio	3	common	with flows arture from	less thar n referend	ed; over-bank flows a bankfull. Width/depth ce width/depth ratio > 1.3.	
nks	6	Bank roo content	ck .	12"+ co	ommon.	, U	ar bould		2	cobbles	6–12".	y boulde			4	class.		in the 3-			6	or less.			of gravel sizes, 1	-3" 8
Lower banks	7	Obstruct to flow	ions		w/o cut		mbedde epositio		2	currents a fewer and	and mino d less firr		ing. Obst	ructions	4		th high flo	ent, unsta ows caus			6	Frequent obstructions cause bank erosion y traps full, channel mig Almost continuous cu			earlong. Sedimen	8
Low	8	Cutting		Little or <6".	none. I	nfreque	nt raw ba	anks	4	Some, ir constrict to 12".					6	mat ove	erhangs	ts 12–24 and slo	ughing	evident.	12	traps full, channel			'	16
	9	Depositi	on	Little or point ba		argemen	it of char	nnel or	4	Some ne coarse ç		increase	e, mostly	y from	8	Modera and coa new ba	arse sar	stion of nd on old	0		12		•	•	predominantly fine bar development	16
	10	Rock angularit	ty	-	edges a s rough		ers. Plan	e	1	Rounde Surface			-		2	Corners dimens		dges we	ll round	ed in 2	3	Well rou smooth		n all din	nensions, surface	6 (4)
	11	Brightne	SS		es dull, c ally not b	dark or s pright.	stained.			Mostly d surfaces		may ha	ve <35%	% bright	2	Mixture mixture		d bright,	i.e., 35-	-65%	3	Predom scoured			> 65%, exposed o	r 4
E	12	Consolida particles		Assorte overlap		tightly p	acked o	r	2	Moderat overlapp		ked with	n some		4	-	loose as nt overla	ssortmei ap.	nt with n	10	6	No pacl easily n	-	ident. Lo	oose assortment,	8
Bottom	13	Bottom s distributi			e change al 80–10		t. Stable		4	Distribut 50–80%		0		aterial	8	materia	als 20–5				12	Marked materia			ange. Stable	16
	14	Scouring depositio		<5% of deposit		affected	l by scou	ur or	6	constric	tions an	d. Scour nd where deposit	e grades		12	at obstr	ructions	ed. Depo , constri Illing of p	ctions a		18				bottom in a state yearlong.	of 24
	15	Aquatic vegetatio	on		•		s-like, da ft water t		1	Commo and poo	•			-		Presen backwa makes		asonal a		owth	3				e or absent. Yello om may be preser	
						Exe	cellent	total =	17				Good	total =	30				Fair	total =	0				Poor tota	I = 20
Stream ty	/pe	A1	A2	A3	A4	A5	A6	B1	B2	B3	B4	B5	B6	C1	C2	C3	C4	C5	C6	D3	D4	D5	D6	I	Grand total	67
Good (Stab	le)	38-43	38-43	54-90	60-95	60-95	50-80	38-45	38-45	40-60	40-64	48-68	40-60	38-50	38-50	60-85	70-90	70-90	60-85	85-107	85-107	85-107	67-98	1	Grand total	07
Fair (Mod. u	unstable	44-47	44-47	91-129	96-132	96-142	81-110	46-58	46-58	61-78	65-84	69-88	61-78	51-61	51-61	86-105	91-110	91-110	86-105	108-132	108-132	108-132	99-125		Existing	F4
Poor (Unsta	able)	48+	48+	130+	133+	143+	111+	59+	59+	79+	85+	89+	79+	62+	62+	106+	111+	111+	106+	133+	133+	133+	126+		stream type	
Stream ty	/pe	DA3	DA4	DA5	DA6	E3	E4	E5	E6	F1	F2	F3	F4	F5	F6	G1	G2	G3	G4	G5	G6			-	*Potential	C4
Good (Stab	le)	40-63	40-63	40-63	40-63	40-63	50-75	50-75	40-63	60-85	60-85	85-110	85-110	90-115	80-95	40-60	40-60	85-107	85-107	90-112	85-107]			stream type	=
Fair (Mod. u	unstable	64-86	64-86	64-86	64-86	64-86	76-96	76-96	64-86	86-105	86-105	111-125	111-125	116-130	96-110	61-78	61-78	108-120	108-120	113-125	108-120				Modified o	hannel
Poor (Unsta	able)	87+	87+	87+	87+	87+	97+	97+	87+	106+	106+	126+	126+	131+	111+	79+	79+	121+	121+	126+	121+				stability ra	
																	*Ra	ting is a	djusted	to poter	ntial strea	am type,	not exi	sting.	Good (Stal	le)
																									-	

Worksheet 3-10. Pfankuch (1975) channel stability ra	ng procedure, as modified by Ro	osgen (1996, 2001c, 2006b).
--	---------------------------------	-----------------------------

Stream:	LILLY	(RUN					Loc	ation:	REAC	H 4				Valley	туре:			Obs	ervers:	PVC	& KNH				Date: 4/10/2	019
Loca-	Key	Cata	aon/			Exce	ellent					Go	od					F	air						Poor	
tion	ney	Cate	yory		[Descriptio	n		Rating		C	Descriptio	n		Rating		[Descriptio	n		Rating		[Descri	ption	Rating
(0	1	Landfor slope	m	Bank sl	ope gra	dient <3	80%.		2	Bank sl	ope gra	dient 30	-40%.		4	Bank sl	ope gra	dient 40	-60%.		6	Bank slo	ope gradi	ent >	60%.	8
Upper banks	2	Mass er	rosion	No evic erosion		f past or	future m	nass	3	Infreque future p		stly heale	ed over	. Low	6		nt or larg /earlong	U ,	sing sed	liment	9				sing sediment ne danger of same	
pper	3	Debris j potentia		Essenti channe		ent from	n immedi	iate	2	Present limbs.	, but mo	ostly sma	all twigs	and	4	Modera larger s	ate to he sizes.	avy am	ounts, m	nostly	6		te to heav inantly lar			8
ה	4	Vegetat bank protectio		sugges root ma	t a deep iss.	o, dense	gor and soil-bin	ding	3	less vig root ma	or sugg ss.	y. Fewei est less	dense	or deep	6	fewer s	6 densit pecies f inuous r	rom a s	hallow,	ind	9	vigor inc shallow	dicating p	oor, c s.	er species and le liscontinuous and	12
	5	Channe capacity		stage. Wi reference	dth/depth	ratio depa	ntain the ba arture from 1.0. Bank-		1	Width/dep	oth ratio de th ratio = 1	ntained wi eparture fr 1.0–1.2. B	om refere	ence	2	ratio depa	stage is no arture from . Bank-He	n referenc	e width/de	pth ratio	3	common w ratio depa	ith flows les	ss than eferenc	ed; over-bank flows a bankfull. Width/deptl æ width/depth ratio > .3.	
nks	6	Bank ro content	ck	12"+ co	mmon.	, 0	ar bould		2	cobbles	6–12".	y boulde			4	class.	6. Most				6	or less.	Ū		of gravel sizes, 1	-3" 8
Lower banks	7	Obstruc to flow	tions		w/o cut		mbedde epositio		2	currents fewer an	and mino d less firr		ng. Obst	ructions	4		ely freque th high flo I filling.				6	cause b	ank erosi	ion ye	and deflectors arlong. Sedimen ation occurring.	8
Low	8	Cutting		Little or <6".	none. I	nfreque	nt raw ba	anks	4			ently at o aw bank			6	mat ove	ant. Cut erhangs	and slo	ughing	evident.	12	traps full, chan			s, some over 24" ngs frequent.	16
	9	Deposit	ion	Little or point ba		argemen	it of char	nnel or	4	Some n coarse		increase	e, mostl	y from	8		ate depo arse sar rs.				12				redominantly fine bar development	
	10	Rock angulari	ity		edges a s rough		ers. Plan	e	1			ers and e th and fl	-		2	Corner: dimens	s and eo ions.	lges we	ll round	ed in 2	3	Well rou smooth.	inded in a	all dim	ensions, surface	s (4)
	11	Brightne	ess	Surface Genera		dark or s pright.	stained.		1	Mostly of surface:		may ha	ve <35%	% bright	2	Mixture mixture	dull and range.	d bright,	i.e., 35-	-65%	3		inantly br surfaces		> 65%, exposed (or 4
E	12	Consolida particles		Assorte overlap		tightly p	acked o	r	2	Modera overlap		ked with	n some		4	appare	loose as nt overla	ap.			6	easily m	loved.		oose assortment,	8
Bottom	13	Bottom distribut		No size materia			t. Stable	1	4	50–80%	b .	ft light. S		naterial	8	materia	ate chan Ils 20–5	0%.			12		distributions 0–20%.		ange. Stable	16
	14	Scourin depositi	•	<5% of deposit		affected	l by scou	ur or	6	constric	tions an	d. Scour nd where depositi	e grades		12	at obstr	% affecte ructions, Some fi	, constri	ctions a		18		an 50% o hange ne		bottom in a state rearlong.	of 24
	15	Aquatic vegetati			•		s-like, da ft water ⊧		1		•	e forms i . Moss h			2	backwa	t but spo ater. Sea rocks sl	asonal a		owth	3				e or absent. Yello m may be preser	
						Exe	cellent	total =	13				Good	total =	30				Fair	total =	6				Poor tota	al = 20
Stream ty	ре	A1	A2	A3	A4	A5	A6	B1	B2	B3	B4	B5	B6	C1	C2	C3	C4	C5	C6	D3	D4	D5	D6		Grand total	= 69
Good (Stab	le)	38-43	38-43	54-90	60-95	60-95	50-80	38-45	38-45	40-60	40-64	48-68	40-60	38-50	38-50	60-85	70-90	70-90	60-85	85-107	85-107	85-107	67-98		Grand total	69
Fair (Mod. u	unstable	44-47	44-47	91-129	96-132	96-142	81-110	46-58	46-58	61-78	65-84	69-88	61-78	51-61	51-61	86-105	91-110	91-110	86-105	108-132	108-132	108-132	99-125		Existing	F4
Poor (Unsta	able)	48+	48+	130+	133+	143+	111+	59+	59+	79+	85+	89+	79+	62+	62+	106+	111+	111+	106+	133+	133+	133+	126+		stream type	=
Stream ty	pe	DA3	DA4	DA5	DA6	E3	E4	E5	E6	F1	F2	F3	F4	F5	F6	G1	G2	G3	G4	G5	G6		<u> </u>		*Potential	C4
Good (Stab	le)	40-63	40-63	40-63	40-63	40-63	50-75	50-75	40-63	60-85	60-85	85-110	85-110	90-115	80-95	40-60	40-60	85-107	85-107	90-112	85-107			-	stream type	=
Fair (Mod. u	unstable	64-86	64-86	64-86	64-86	64-86	76-96	76-96	64-86	86-105	86-105	111-125	111-125	116-130	96-110	61-78	61-78	108-120	108-120	113-125	108-120				Modified o	hannel
Poor (Unsta	able)	87+	87+	87+	87+	87+	97+	97+	87+	106+	106+	126+	126+	131+	111+	79+	79+	121+	121+	126+	121+				stability ra	
																	*Ra	ting is a	djusted	to poter	ntial strea	am type,	not existi	ng.	Good (Stal	ole)

Only	enter data in t	he green c	ells. All oth	er cells	s are eith	er linke	d to othe	er works	heets or	have eq	uations.
Project Name					Lill	y Run Stream	Mitigation				
Feature Feature I.D.	Lat/Lo Start	End	Length, ft (Bank or	Height, ft (Bank or	BEHI Rating	NBS Rating	Predicted Rate of Bank	Predicted Erosion	Predicted Erosion	Predicted Erosion Rate	Comments
(Bank., Headcut or Deposition I.D.)	Headcut Location or Start of Bank/Deposition	For Banks or Deposition only	deposition)	(Dunk of Headcut)	g	1(2) 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	Erosion (ft/year)	Amount (ft ³ /year)	Amount (tons/year)	(tons/year/ft)	
Left Bank, LB1	Reach	4	264	2.60	Moderate	High	0.80	548.29	26.40	0.100	
Right Bank, RB1	Reach	4	264	2.60	Moderate	High	0.80	548.29	26.40	0.100	
Left Bank, LB2	Reach	4	238	2.00	Moderate	High	0.80	380.96	18.34	0.077	
Right Bank, RB2	Reach	4	238	1.70	Moderate	High	0.80	323.82	15.59	0.065	
Left Bank, LB3	Reach	4	346	6.00	High	High	1.00	2078.40	100.07	0.289	
Right Bank, RB3	Reach	4	346	2.40	Moderate	High	0.80	665.09	32.02	0.092	
Left Bank, LB4	Reach	3	87	0.33	Low	Low	0.02	0.57	0.03	0.000	
Right Bank, RB4	Reach	3	87	0.33	Low	Low	0.02	0.57	0.03	0.000	
Left Bank, LB5	Reach	3	186	1.00	Moderate	Low	0.13	23.20	1.12	0.006	
Right Bank, RB5	Reach	3	186	1.00	Moderate	Low	0.13	23.20	1.12	0.006	
Right Bank, RB6	Reach	3	340	2.80	High	Low	0.40	380.91	18.34	0.054	
Left Bank, LB6	Reach	3	340	2.80	High	Low	0.40	380.91	18.34	0.054	
Right Bank, RB7	Reach		94	2.70	High	Low	0.40	101.63	4.89	0.052	
Left Bank, LB7	Reach		491	3.70	Low	Low	0.02	36.30	1.75	0.004	
Left Bank, LB8	Reach	1	134	2.00	Moderate	Low	0.13	33.38	1.61	0.012	
Left Bank, LB9	Reach		256	2.00	Moderate	Low	0.13	64.03	3.08	0.012	
Left Bank, LB10	Reach	1	256	2.60	Moderate	Low	0.13	83.23	4.01	0.016	
TOTAL	OF ALL GRIDS		4152.1	N/A	N/A	N/A	6.9	5672.8	273.1	0.9	

RAPID HABI	TAT ASSESSMENT: LOW		1	•			>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
Station ID/ Stream Name	LILLY RUN - REACH 1		-		LAT (DD)		
Reach Length (m)		Date	4/10/*	19	LONG (DD)		
HABITAT				CATEGO	۲Y		
PARAMETER	Optimal		Sub-opti			ginal	Poor
1. SUBSTRATE/ DIVERSITY AVAILBLE COVER FOR AMPHIBIANS CRAYFISH	Greater than 50% of substrate consisting of mix of snags, tree roots or other stable habitat providing cover for amphibians and aquatic or terrestrial invertebrates. LWD in moderate to advanced stage of decay and within- active channel; Substrate roughness capable of trapping lots of organic matter. If moss covered, rate high.	stable h cover po for main presenc form of l	abitat; well s otential; ade tenance of µ e of additior new fall. Sul ss still capa	d mix of diverse suited for full quate habitat populations; nal LWD in the pstrate ble of trapping	habitat availa desirable; sul disturbed or r density and/o early decay s suitable for tra	x of stable cover; bility less than bstrate frequently emoved. LWD low in r may be new fall or in tage. Some areas apping organic matter. absent, score	Less than 10% stable cover; lack of habitat is obvious; substrate unstable or lacking. Few areas suitable for trapping organic matter.
SCORE: 4	Rate in Cl	nanr	iel a	nd Toe	of Ba	nks	
	20 19 18 17 16	15	14 13	12 11	10 9	876	5 4 3 2 1 0
2. POOL SUBSTRATE CHARACTER- IZATION In dry channels, pool areas should still be observable	Mixture of substrate materials, with gravel and firm sand prevalent; root mats and submerged (or remnant) aquatic vegetation are common.	mud ma mats an	y be domina	, mud, or clay; ant; some root d (or remnant) ent.		y or sand bottom; t mat; no submerged vegetation.	Hard-pan clay or bedrock; no root mat or vegetation.
SCORE: 10	20 19 18 17 16	15	14 13	12 11	10 9	876	5 4 3 2 1 0
3. CHANNEL ALTERATION SCORE: 1	Channelization or dredging absent of minimal; stream with normal pattern.	usually i abutmer channel past 20	years) may	ridge e of past dredging (>than be present, but	embankments present on bo	on may be extensive; s or shoring structures oth banks; 40 to 80% of ach channelized and	Banks shored with gabion or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered or removed entirely.
	20 19 18 17 16	15	14 13	12 11	10 9	8 7 6	5 4 3 2 1 0
4. SEDIMENT DEPOSITION SCORE: 15	Little or no enlargement of "islands" or point bars and less than 20% of the bottom affected by fine sediment deposition. Leaf packs and woody debris with minimal silt covering.	mostly fr sedimer is affecte	rom sand, or ht; 20 to 50% ed; slight de eaf packs wi	of the bottom	sand, or fine new bars; 50 affected; sedi obstructions, bends; model	position of new sediment on old and to 80% of the bottom ment deposits at constrictions, and rate deposition of pools af packs with heavier	Heavy deposits of fine material, increased bar development; more than 80% of the bottom changing frequently; pools almost absent due to substantial sediment deposition.
	20 19 18 17 16	15	14 13	12 11	10 9	876	5 4 3 2 1 0
5. CHANNEL SINUOSITY SCORE: 5	The bends in the stream increase the stream length 3 to 4 times longer than if it was in a straight line.	the strea	am length 2	eam increase to 3 times in a straight	the stream ler	he stream increase ngth up to 2 times it was in a straight	Channel is straight; waterway has been channelized for a long distance.
	20 19 18 17 16	15	14 13	12 11	10 9	876	5 4 3 2 1 0

Appendix 1: Modified Environmental Protection Agency Rapid Bioassessment Protocol (EPA RBP) Habitat Assessment Field Data Sheet (Low Gradient Ephemeral/Intermittent Streams)

RAPID HABITA	AT ASSESS	MENT: L	OW (GRADIENT	>>>>>	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	≫≫≫ F	Reviewers Initi	als		
	Optim	nal		Sul	b-optii	mal	Ма	argina	al		Poor	
6. BANK STABILITY (score each bank) *determine left/ right by facing downstream	Banks stable; o erosion or ban or minimal; littl future problem affected).	k failure ab e potential	sent for	areas of eros	sion mos	nfrequent, small stly healed over; ach has areas of		ch has a	le; 30-60% of areas of erosion; g floods.	areas; frequer section obvious 60-100	le; many "raw" are nt along s s and be s bank sl % of bar nal scars.	eas straight ends; oughing; nk has
LEFT: <mark>9</mark>	10	(9)		8	7	6	5	4	3	2	1	0
RIGHT: <mark>9</mark>	10	9		8	7	6	5	4	3	2	1	0
7. BANK VEGETATIVE PROTECTION SCORE:	More than 90% bank surfaces riparian zones vegetation incl understory shr woody plants (ferns, mosses) disruption thro mowing minim almost all plan to grow natura	and immed covered by uding trees ubs, and n herbs, gras); vegetativ ugh grazing al or not ev ts allowed	diate / s, on- sses, e g or vident;	70-90% of th are covered class of plan represented; not affecting extent; more potential plan remaining.	by vege ts is not disrupti plant gr than on nt stubbl	are covered obvious; pat closely crop less that one plant stubble	by veg tches o ped ve e-half o e heigh	ambank surfaces jetation; disruption f bare soil or getation common; f the potential t remaining. mnants of her	stream are cov vegeta stream very hig been re or less height.	bank veg gh; veget emoved t in averag	faces uption of getation tation has to 2 inches ge stubble	
LEFT: 4	10	9		8	7	6	5	(4)	3	2	1	0
i/				-			Ŭ Ŭ	(+)	5		-	-
RIGHT: <mark>4</mark>	10	9		8	7	6	5	4	3	2	1	0
8. WIDTH OF UNDISTURBED VEG. ZONE (undisturbed	10 Width of undist tative zone is human activitie roadbeds, clea crops) have no zone.	turbed veg >18 meters es (parking arcuts, lawr	s; lots, is, or	Zone width is	7 s betwee an activi	en 12 and 18 ities have only	5 Zone width i meters; hum	is betwo nan act	3 een 6 and 12	2 Width of 6 mete disturb	1 of zone is rs; little c ed veget	0 s less than
8. WIDTH OF UNDISTURBED VEG. ZONE (undisturbed veg. Is trees, shrubs, and non- woody macro- phytes)	Width of undisi tative zone is human activitie roadbeds, clea crops) have no	turbed veg >18 meters es (parking arcuts, lawr	s; lots, is, or	Zone width is meters; hum	7 s betwee an activi	en 12 and 18 ities have only	5 Zone width i meters; hum	is betwo nan act	3 een 6 and 12 ivities have	2 Width of 6 mete disturb	1 of zone is rs; little c ed veget	0 s less than or no un- ation due
8. WIDTH OF UNDISTURBED VEG. ZONE (undisturbed veg. Is trees, shrubs, and non- woody macro- phytes) LEFT: 0 RIGHT: 0	Width of undis tative zone is human activitie roadbeds, clea crops) have no zone.	turbed veg >18 meters es (parking arcuts, lawr ot impacted	s; lots, is, or	Zone width is meters; hum minimally im	7 s betwee an activi pacted t	en 12 and 18 ities have only his zone.	5 Zone width i meters; hum impacted the	4 is betwo han act e zone	3 een 6 and 12 ivities have a great deal.	2 Width o 6 mete disturb to man	1 of zone is rs; little c ed veget -induced	0 s less than or no un- ation due activities.
8. WIDTH OF UNDISTURBED VEG. ZONE (undisturbed veg. Is trees, shrubs, and non- woody macro- phytes) LEFT: 0	Width of undist tative zone is human activitie roadbeds, clea crops) have no zone.	turbed veg >18 meters es (parking arcuts, lawr ot impacted 9 9 9 9	s; lots, is, or this er is p	Zone width is meters; hum minimally im 8 8 resent; otherw	7 s betwee an activi pacted t 7 7	en 12 and 18 ities have only his zone. 6 6	5 Zone width i meters; hum impacted the 5 5 5 Total fro	4 is betw han act e zone 4 4 4 m fror	3 een 6 and 12 ivities have a great deal. 3	2 Width of 6 mete disturbe to man 2 2 from ba	1 of zone is rs; little c ed veget -induced 1 1 ck_26	0 s less than for no un- ation due activities. 0 0 0 0 0 0
8. WIDTH OF UNDISTURBED VEG. ZONE (undisturbed veg. Is trees, shrubs, and non- woody macro- phytes) LEFT: 0 RIGHT: 0 TOTAL:	Width of undist tative zone is human activitie roadbeds, clea crops) have no zone. 10 10 Max Pool Dep Average Char	turbed veg >18 meters es (parking arcuts, lawr ot impacted 9 9 9 9 9 9	s; lots, is, or this er is p n (Toe	Zone width is meters; hum minimally im 8 8 resent; otherw of Banks)	7 s betwee an activi pacted t 7 7 7 wise "N	en 12 and 18 ities have only his zone. 6 6 6 A")cm	5 Zone width i meters; hum impacted the 5 5 5 Total fro	4 is betw han act e zone 4 4 4 m fror	3 een 6 and 12 ivities have a great deal. 3 3 nt <u>35</u> + Total age= Total Scor	2 Width of 6 mete disturbe to man 2 2 from ba	1 of zone is rs; little c ed veget -induced 1 1 ck_26	0 s less than for no un- ation due activities. 0 0 0 0 0
8. WIDTH OF UNDISTURBED VEG. ZONE (undisturbed veg. Is trees, shrubs, and non- woody macro- phytes) LEFT: 0 RIGHT: 0 TOTAL: (max=160) Average Width → What is the o Deciduous □ C	Width of undist tative zone is human activitie roadbeds, clea crops) have no zone. 10 10 Max Pool Dep Average Char Intact Rip Veg dominant veg coniferous (pine	turbed veg >18 meters es (parking arcuts, lawr ot impacted 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	s; lots, is, or this er is p n (Toe Zone (Zone width is meters; hum minimally im 8 8 resent; other of Banks) (m) Left n the reach?	7 s betwee an activi pacted t 7 7 7 wise "N	en 12 and 18 ities have only his zone. 6 6 A")cm _m <1 m Estimated age	5 Zone width i meters; hum impacted the 5 5 5 Score Per e of forest:	4 is betwhan act e zone 4 4 m fror ercent Righ >50	3 een 6 and 12 ivities have a great deal. 3 3 nt <u>35</u> + Total age= Total Scor	Width of 6 mete disturbe to man 2 2 from ba re /160 > m rs5	1 of zone is rs; little c ed veget -induced 1 1 ck_26 (100	0 s less than or no un- action due activities. 0 0 0 0 0 0 0 33.9
8. WIDTH OF UNDISTURBED VEG. ZONE (undisturbed veg. Is trees, shrubs, and non- woody macro- phytes) LEFT: 0 RIGHT: 0 TOTAL: (max=160) Average Width → What is the o	Width of undist tative zone is human activitie roadbeds, clea crops) have no zone. 10 10 Max Pool Dep Average Char Intact Rip Veg dominant veg Coniferous (pine	turbed veg >18 meters es (parking arcuts, lawr ot impacted 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	s; lots, is, or this er is p n (Toe Zone (ype ir D Mi	Zone width is meters; hum minimally im 8 8 resent; othern of Banks) (m) Left the reach? xed (>10%)	7 s betwee an activi pacted t 7 7 7 wise "N	en 12 and 18 ities have only his zone. 6 6 6 A")cm _m <1 m Estimated age Number of str	5 Zone width i meters; hum impacted the 5 5 Total fro Score Pe e of forest: rata (e.g, can	4 is betwinan act e zone 4 4 m fror ercent Righ >50 opy, su	3 een 6 and 12 ivities have a great deal. 3 3 1 3 4 3 3 3 1 3 3 3 3 3 3 3 1 3 3 3 3 3 3 3 3 3 3 3 3 4 5 4 5 5 5 6 7 7 7 7 9 9 9 1 1 1 1 1 1 1 1 1	2 Width of 6 mete disturbe to man 2 2 from ba re /160 > m rs5 herb (4	1 of zone is rs; little c ed veget -induced 1 1 ck_22 (100 (100 -25 yrs max))	0 s less than or no un- ation due activities. 0 0 0 0 0 33.9 % $X < 5 yrs$
8. WIDTH OF UNDISTURBED VEG. ZONE (undisturbed veg. Is trees, shrubs, and non- woody macro- phytes) LEFT: () RIGHT: () TOTAL: (max=160) Average Width → What is the o Deciduous □ C	Width of undist tative zone is human activitie roadbeds, clea crops) have no zone. 10 10 10 Max Pool Deg Average Chai Intact Rip Veg Coniferous (pine Shading (%) er, middle, up	turbed veg >18 meters es (parking arcuts, lawr ot impacted 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	s; lots, is, or this er is p n (Toe Zone (ype ir D Mit h) In	Zone width is meters; hum minimally im 8 8 resent; othern of Banks) (m) Left the reach? xed (>10%)	7 s betwee an activi pacted t 7 7 wise "N	en 12 and 18 ities have only his zone. 6 6 6 A")cm _m <1 m Estimated age Number of str n cloudless day	5 Zone width i meters; hum impacted the 5 5 Total fro Score Pe e of forest: rata (e.g, can	4 is betwinan act e zone 4 4 m fror ercent Righ >50 opy, so r at no	3 een 6 and 12 ivities have a great deal. 3 3 nt	2 Width of 6 mete disturb to man 2 2 2 from ba re /160 2 m rs5 herb (4 are that	1 of zone is rs; little c ed veget -induced 1 1 ck 26 (100	0 s less than or no un- ation due activities. 0 0 0 0 0 33.9 % $X < 5 yrs$

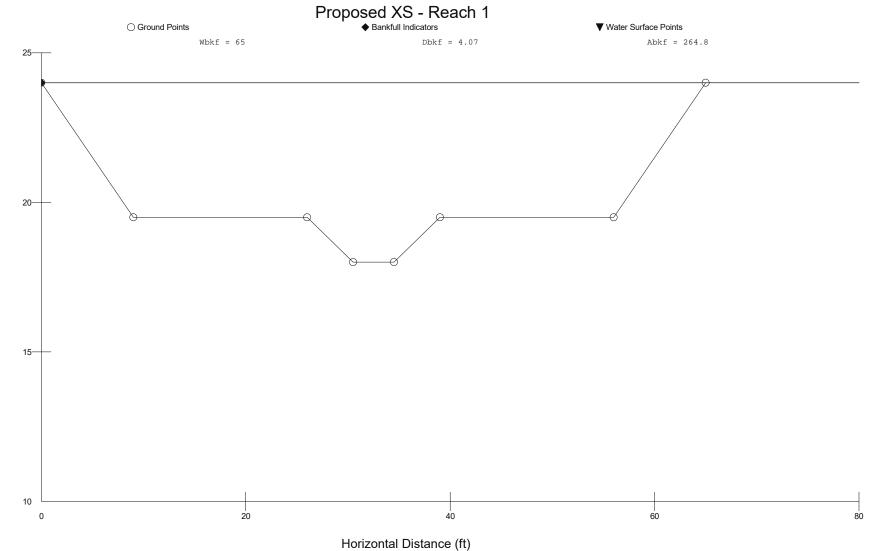
RAPID HABI	TAT ASSESSMENT: LOW			•			>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	>>>
Station ID/ Stream Name	LILLY RUN - REACH 3		-		LAT (DD)			╞
Reach Length (m)		Date	4/10/1	9	LONG (DD)			
HABITAT				CATEGOR	RY			
PARAMETER	Optimal		Sub-optir			ginal	Poor	
1. SUBSTRATE/ DIVERSITY AVAILBLE COVER FOR AMPHIBIANS CRAYFISH	Greater than 50% of substrate consisting of mix of snags, tree roots or other stable habitat providing cover for amphibians and aquatic or terrestrial invertebrates. LWD in moderate to advanced stage of decay and within- active channel; Substrate roughness capable of trapping lots of organic matter. If moss covered, rate high.	stable h cover po for main presenc form of l	abitat; well su otential; adeq tenance of p e of additiona new fall. Sub ss still capab	uate habitat opulations; al LWD in the	habitat availa desirable; sul disturbed or r density and/o early decay s	x of stable cover; bility less than bstrate frequently removed. LWD low in or may be new fall or in tage. Some areas apping organic matter. absent, score	Less than 10% stable cover; lack of habitat is obvious; substrate unstable or lacking. Few areas suitable for trapping organic matter.	9
SCORE: 11	Rate in Cl	nanr	nel ar	nd Toe	of Ba	inks		
	20 19 18 17 16	15	14 13	12 11	10 9	876	5 4 3 2 1 0	
2. POOL SUBSTRATE CHARACTER- IZATION In dry channels, pool areas should still be observable	Mixture of substrate materials, with gravel and firm sand prevalent; root mats and submerged (or remnant) aquatic vegetation are common.	mud ma mats an	y be domina	mud, or clay; nt; some root ł (or remnant) nt.		ay or sand bottom; t mat; no submerged vegetation.	Hard-pan clay or bedrock; no root mat or vegetation.	
SCORE: 10	20 19 18 17 16	15	14 13	12 11	10 9	876	5 4 3 2 1 0	L
3. CHANNEL ALTERATION SCORE: 8	Channelization or dredging absent of minimal; stream with normal pattern.	usually i abutmer channel past 20	years) may b ence of recen	idge of past Iredging (>than be present, but	embankments present on bo	on may be extensive; s or shoring structures oth banks; 40 to 80% of ach channelized and	Banks shored with gabion or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered or removed entirely.	1
	20 19 18 17 16	15	14 13	12 11	10 9	8 7 6	5 4 3 2 1 0	
4. SEDIMENT DEPOSITION SCORE: 18	Little or no enlargement of "islands" or point bars and less than 20% of the bottom affected by fine sediment deposition. Leaf packs and woody debris with minimal silt covering.	mostly fr sedimer is affecte	rom sand, or ht; 20 to 50% ed; slight dep eaf packs wit	of the bottom	sand, or fine s new bars; 50 affected; sedi obstructions, bends; moder	position of new sediment on old and to 80% of the bottom ment deposits at constrictions, and rate deposition of pools af packs with heavier	Heavy deposits of fine material, increased bar development; more than 80% of the bottom changing frequently; pools almost absent due to substantial sediment deposition.	
	20 19 18 17 16	15	14 13	12 11	10 9	8 7 6	5 4 3 2 1 0	
5. CHANNEL SINUOSITY SCORE: 3	The bends in the stream increase the stream length 3 to 4 times longer than if it was in a straight line.	the strea	ds in the stre am length 2 t han if it was i		the stream ler	the stream increase ngth up to 2 times it was in a straight	Channel is straight; waterway has been channelized for a long distance.	
	20 19 18 17 16	15	14 13	12 11	10 9	8 7 6	5 4 3 2 1 0	

Appendix 1: Modified Environmental Protection Agency Rapid Bioassessment Protocol (EPA RBP) Habitat Assessment Field Data Sheet (Low Gradient Ephemeral/Intermittent Streams)

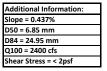
RAPID HABITA	AT ASSESS	MENT: LO)w GF	RADIENT	>>>>>	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	»>> Re	viewers Initi	ials					
	Optin	nal		Su	b-optiı	mal	Ма	rginal							
6. BANK STABILITY (score each bank) *determine left/ right by facing downstream	Banks stable; erosion or bar or minimal; litt future problem affected).	nk failure abs le potential f	ent a or 5	areas of ero	sion mos	frequent, small stly healed over; ich has areas of	Moderately i bank in reac high potentia	h has are	eas of erosion;	areas; frequer section obvious 60-100	lle; many "raw" area nt along s is and bei s bank slo % of banl nal scars.	as traight nds; oughing;			
LEFT: <mark>6</mark>	10	9		8	7	6	5	4	3	2	1	0			
RIGHT: <mark>6</mark>	10	9		8	7	6	5	4	3	2	1	0			
7. BANK VEGETATIVE PROTECTION SCORE:	More than 90% bank surfaces riparian zones vegetation inc understory sh woody plants ferns, mosses disruption thro mowing minim almost all plan to grow natura	and immedi s covered by luding trees, rubs, and no (herbs, grass s); vegetative bugh grazing hal or not evints allowed	ate a n- r ses, e or F dent;	nbank surfaces ation; disruption pare soil or tation common; he potential emaining. nants of her	stream are cov vegeta stream very hi been re or less height.	in averag	aces uption of etation ation has o 2 inches ge stubble								
LEFT: 5	10	9		8	7	6	5	4	3	2	1	0			
RIGHT: 5	10	9		8	7	6	(5)	4	3	2	1	0			
						-		-	· ·	rbs, and saplings.					
8. WIDTH OF UNDISTURBED VEG. ZONE (undisturbed veg. Is trees, shrubs, and non- woody macro- phytes)	Width of undis tative zone is human activiti roadbeds, clea crops) have no zone.	>18 meters; es (parking l arcuts, lawns	ots, r s, or		an activi	en 12 and 18 ities have only	Zone width i meters; hum impacted the	s betwee	en 6 and 12 ties have	Width of 6 mete disturb	of zone is	less than r no un- ation due			
UNDISTURBED VEG. ZONE (undisturbed veg. Is trees, shrubs, and non- woody macro- phytes)	tative zone is human activiti roadbeds, clea crops) have n	>18 meters; es (parking l arcuts, lawns	ots, r s, or	meters; hum	an activi	en 12 and 18 ities have only	Zone width i meters; hum	s betwee	en 6 and 12 ties have	Width of 6 mete disturb	of zone is rs; little of ed vegeta	less than r no un- ation due			
UNDISTURBED VEG. ZONE (undisturbed veg. Is trees, shrubs, and non- woody macro- phytes) LEFT: 1 RIGHT: 1	tative zone is human activiti roadbeds, clea crops) have no zone.	 >18 meters; es (parking l arcuts, lawns ot impacted f 	ots, r s, or	meters; hum minimally im	an activi	en 12 and 18 ities have only his zone.	Zone width i meters; hurr impacted the	s betwee nan activi e zone a	en 6 and 12 ties have great deal.	Width 6 6 mete disturb to man	of zone is rs; little o ed vegeta -induced	less than r no un- ation due activities.			
UNDISTURBED VEG. ZONE (undisturbed veg. Is trees, shrubs, and non- woody macro- phytes) LEFT: 1 RIGHT: 1 TOTAL:	tative zone is human activiti roadbeds, clea crops) have no zone. 10	 >18 meters; es (parking la arcuts, lawns ot impacted f 9 9 9 9 9 9 	r is pres	meters; hurr minimally im 8 8 sent; other	an activi pacted t 7 7	en 12 and 18 ities have only his zone. 6 6	Zone width i meters; hum impacted the 5 5 5 Total from	s betwee lan activi e zone a 4 4 4 m front	n 6 and 12 ties have great deal. 3 <u>3</u> <u>50</u> +Total	Width of 6 meter disturb to man	of zone is rs; little o ed vegeta -induced 1 1 mck_24	less than r no un- ation due activities. 0 0 0 74			
UNDISTURBED VEG. ZONE (undisturbed veg. Is trees, shrubs, and non- woody macro- phytes) LEFT: 1 RIGHT: 1 TOTAL: (max=160)	tative zone is human activiti roadbeds, clea crops) have ne zone. 10 10 Max Pool De Average Cha	 >18 meters; es (parking la arcuts, lawns ot impacted for the second second	r is pres (Toe of	meters; hurr minimally im 8 8 sent; other f Banks)	an activi pacted t 7 7	en 12 and 18 ities have only his zone. 6 6 A")cm _m	Zone width i meters; hum impacted the 5 5 5 Total from	s betwee lan activi e zone a 4 4 4 m front	n 6 and 12 ties have great deal. 3 3	Width of 6 meter disturb to man	of zone is rs; little o ed vegeta -induced 1 1 mck_24	less than r no un- ation due activities. 0 0 0 - = 74			
UNDISTURBED VEG. ZONE (undisturbed veg. Is trees, shrubs, and non- woody macro- phytes) LEFT: 1 RIGHT: 1 TOTAL:	tative zone is human activiti roadbeds, clea crops) have no zone. 10 10 Max Pool De Average Cha Intact Rip Ve dominant veg	 >18 meters; es (parking liancuts, lawns ot impacted for the second second	r is pres (Toe of one (m pe in t	meters; hum minimally im 8 sent; other f Banks) n) Left he reach?	an activi pacted t 7 7 wise "N,	en 12 and 18 ities have only his zone. 6 6 A")cm _m 1 m Estimated age	Zone width i meters; hum impacted the 5 5 5 Total from Score Pe	s betwee aan activi e zone a 4 4 m front ercentag Right _>50 y	in 6 and 12 ties have great deal. 3 <u>3</u> <u>50</u> + Total ge= Total Scor	Width of 6 mete disturb to man 2 2 from ba re /160 0 m rs _X_5	of zone is rs; little o ed vegeta -induced (1) (1) ack 24 (100_4 -25 yrs _	less than r no un- ation due activities. 0 0 0 274 46.2_%			
UNDISTURBED VEG. ZONE (undisturbed veg. Is trees, shrubs, and non- woody macro- phytes) LEFT: 1 RIGHT: 1 TOTAL: (max=160) Average Width I → What is the c	tative zone is human activiti roadbeds, clea crops) have ne zone. 10 10 Max Pool De Average Cha Intact Rip Ve dominant veg Coniferous (pin	 >18 meters; es (parking liancuts, lawns ot impacted for the second second	r is pres (Toe of one (m □ Mixe	meters; hum minimally im 8 sent; other f Banks) f Banks) he reach? d (>10%)	7 7 7 wise "N	en 12 and 18 ities have only his zone. 6 6 A")cm _m 1 m Estimated age	Zone width i meters; hum impacted the 5 5 Total from Score Pe e of forest: rata (e.g, cane	s betwee aan activi e zone a 4 4 m front ercentag Right >50 y opy, sub	an 6 and 12 ties have great deal. 3 <u>3</u> <u>50</u> + Total ge= Total Scor 1 rs25-50 yr canopy, shrub,	Width of 6 mete disturb to man 2 2 2 from ba re /160) m rs _X_5 herb (4	of zone is rs; little o ed vegeta -induced (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	less than r no un- ation due activities. 0 0 274 46.2 _%			
UNDISTURBED VEG. ZONE (undisturbed veg. Is trees, shrubs, and non- woody macro- phytes) LEFT: 1 RIGHT: 1 TOTAL: (max=160) Average Width I → What is the c □ Deciduous □ C	tative zone is human activiti roadbeds, clea crops) have no zone. 10 10 Max Pool De Average Cha Intact Rip Ve dominant veg coniferous (pin e Shading (%) er, middle, u	 >18 meters; es (parking liancuts, lawns ot impacted for the second second	r is pres (Toe of one (m pe in t ∭ Indi	meters; hum minimally im 8 sent; other f Banks) f Banks) he reach? d (>10%)	7 7 7 wise "N.	en 12 and 18 ities have only his zone. 6 6 6 A")cm _m 1 m Estimated age Number of str a cloudless day	Zone width i meters; hum impacted the 5 5 Total from Score Pe e of forest: rata (e.g, cane	s betwee aan activi e zone a 4 4 m front ercentag Right >50 y opy, sub at noo	n 6 and 12 ties have great deal. 3 <u>3</u> <u>50</u> + Total ge= Total Scor 1 rs25-50 yi canopy, shrub, n. Fill in squa	Width of 6 mete disturb to man 2 2 2 from ba re /160) m rs _X_5 herb (4	of zone is rs; little o ed vegeta -induced (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	less than r no un- ation due activities. 0 0 2 _ 74 46.2 % <5 yrs			

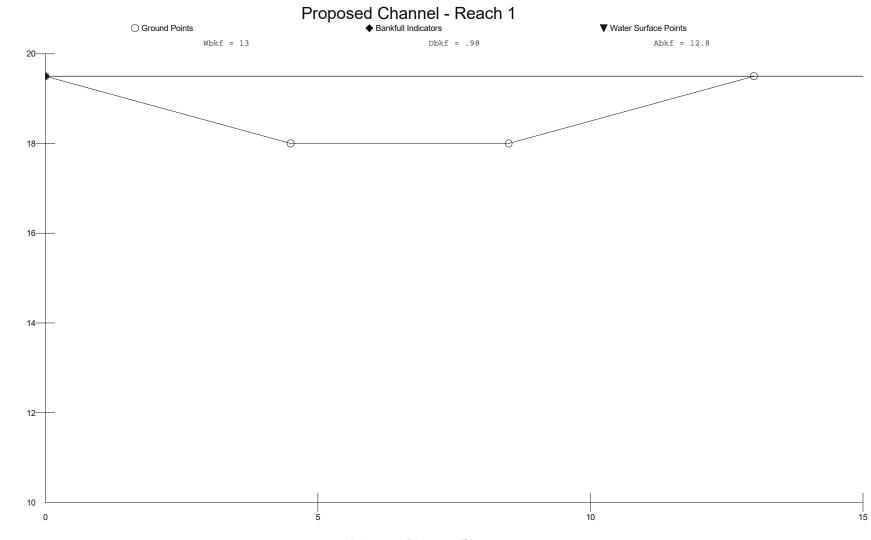
RAPID HABI	TAT ASSESSMENT: LOW			•			>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
Station ID/ Stream Name	LILLY RUN - REACH 4		-		LAT (DD)			
Reach Length (m)		Date	4/10/1	9	LONG (DD)			
HABITAT				CATEGO	RY			
PARAMETER	Optimal		Sub-opti			ginal	Poo	r
1. SUBSTRATE/ DIVERSITY AVAILBLE COVER FOR AMPHIBIANS CRAYFISH	Greater than 50% of substrate consisting of mix of snags, tree roots or other stable habitat providing cover for amphibians and aquatic or terrestrial invertebrates. LWD in moderate to advanced stage of decay and within- active channel; Substrate roughness capable of trapping lots of organic matter. If moss covered, rate high.	stable h cover po for main presenc form of l	abitat; well s otential; adeo tenance of p e of addition new fall. Sub ss still capa	quate habitat populations; al LWD in the	habitat availa desirable; sul disturbed or r density and/o early decay s suitable for tra	x of stable cover; bility less than bstrate frequently removed. LWD low in or may be new fall or in tage. Some areas apping organic matter. absent, score	Less than 10% cover; lack of is obvious; su unstable or lac areas suitable organic matter	habitat bstrate cking. Few for trapping
SCORE: 15	Rate in Cl	nanı	nel ai	nd Toe	of Ba	nks		
	20 19 18 17 16	15	14 13	12 11	10 9	8 7 6	543	2 1 0
2. POOL SUBSTRATE CHARACTER- IZATION In dry channels, pool areas should still be observable	Mixture of substrate materials, with gravel and firm sand prevalent; root mats and submerged (or remnant) aquatic vegetation are common.	mud ma mats an	y be domina	mud, or clay; nt; some root d (or remnant) int.		ay or sand bottom; t mat; no submerged vegetation.	Hard-pan clay no root mat or	
SCORE: 10	20 19 18 17 16	15	14 13	12 11	10 9	876	543	2 1 0
3. CHANNEL ALTERATION SCORE: 8	Channelization or dredging absent of minimal; stream with normal pattern.	usually i abutmer channel past 20	years) may b ence of recer	ridge e of past dredging (>than be present, but	embankments present on bo	on may be extensive; s or shoring structures oth banks; 40 to 80% of ach channelized and	Banks shored or cement; ove the stream rea channelized a disrupted. Ins habitat greatly or removed er	er 80% of ach nd tream altered
	20 19 18 17 16	15	14 13	12 11	10 9	8 7 6	543	2 1 0
4. SEDIMENT DEPOSITION SCORE: 18	Little or no enlargement of "islands" or point bars and less than 20% of the bottom affected by fine sediment deposition. Leaf packs and woody debris with minimal silt covering.	mostly fr sedimer is affecte	rom sand, or ht; 20 to 50% ed; slight dej eaf packs wi	of the bottom	sand, or fine new bars; 50 affected; sedi obstructions, bends; mode	position of new sediment on old and to 80% of the bottom ment deposits at constrictions, and rate deposition of pools af packs with heavier	Heavy deposit material, incre development; 80% of the bo changing freque pools almost a due to substar sediment depo	ased bar more than ttom uently; absent ntial
	20 19 18 17 16	15	14 13	12 11	10 9	8 7 6	543	2 1 0
5. CHANNEL SINUOSITY SCORE: 2	The bends in the stream increase the stream length 3 to 4 times longer than if it was in a straight line.	the strea	ds in the stro am length 2 t nan if it was i		the stream ler	the stream increase ngth up to 2 times it was in a straight	Channel is stra waterway has channelized fo distance.	been
	20 19 18 17 16	15	14 13	12 11	10 9	8 7 6	543	2 1 0

Appendix 1: Modified Environmental Protection Agency Rapid Bioassessment Protocol (EPA RBP) Habitat Assessment Field Data Sheet (Low Gradient Ephemeral/Intermittent Streams)


	AT ASSESS	MENT: LO)W GR	ADIENT	`>>>>>	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	>>> Re	viewers Initi	als		
	Optin	nal		Su	ıb-optiı	mal	Ма	rginal			Poor	
6. BANK STABILITY (score each bank) *determine left/ right by facing downstream	Banks stable; erosion or bar or minimal; litt future problem affected).	nk failure abs tle potential f	ent ar or 5-	eas of ero	sion mos	frequent, small stly healed over; ich has areas of	Moderately bank in reac high potentia	h has are	eas of erosion;	areas; frequer section obvious 60-100	lle; many "raw" area nt along s is and bea s bank slo % of ban nal scars.	as traight nds; oughing;
LEFT: 6	10	9		8	7	6	5	4	3	2	1	0
RIGHT: 6	10	9		8	7	6	5	4	3	2	1	0
7. BANK VEGETATIVE PROTECTION SCORE:	More than 90% bank surfaces riparian zones vegetation inc understory sh woody plants ferns, mosses disruption thro mowing minim almost all plar to grow natura	s and immedi s covered by cluding trees, rubs, and no (herbs, grass s); vegetative bugh grazing hal or not evints allowed	ate ar cli n- re ses, ex or po dent;	e covered ass of plar presented of affecting ktent; more otential pla maining.	l by vege hts is not l; disrupti g plant gr e than on ant stubbl	on evident, but owth potential to e-half of the	50-70% of th are covered obvious; pat closely crop less that one plant stubble	of the aces uption of etation ation has o 2 inches ge stubble gs.				
LEFT: 7	10	9		8	7	6	5	4	2	1	0	
RIGHT: 7	10	9		8	(7)	6	5	4	3	2	1	0
8. WIDTH OF												
UNDISTURBED VEG. ZONE (undisturbed veg. Is trees, shrubs, and non- woody macro- phytes)	Width of undis tative zone is human activiti roadbeds, clea crops) have no zone.	>18 meters; ies (parking l arcuts, lawns	ots, m s, or		nan activi	en 12 and 18 ities have only his zone.	Zone width i meters; hum impacted the	nan activi	ties have	6 mete disturb	of zone is rs; little o ed vegeta -induced	ation due
VEG. ZONE (undisturbed veg. Is trees, shrubs, and non- woody macro-	tative zone is human activiti roadbeds, clea crops) have n	>18 meters; ies (parking l arcuts, lawns	ots, m s, or	eters; hurr	nan activi	ities have only	meters; hum	nan activi	ties have	6 mete disturb	rs; little o ed vegeta	r no un- ation due
VEG. ZONE (undisturbed veg. Is trees, shrubs, and non- woody macro- phytes) LEFT: 1 RIGHT: 1	tative zone is human activiti roadbeds, clea crops) have no zone.	>18 meters; ies (parking l arcuts, lawns ot impacted t	ots, m s, or	eters; hum inimally im	nan activi	ities have only his zone.	meters; hum impacted the	nan activi e zone a	ties have great deal.	6 mete disturb to man	rs; little o ed vegeta -induced	r no un- ation due activities.
VEG. ZONE (undisturbed veg. Is trees, shrubs, and non- woody macro- phytes) LEFT: 1 RIGHT: 1 TOTAL:	tative zone is human activiti roadbeds, clea crops) have no zone. 10	 >18 meters; ies (parking liancuts, lawns ot impacted for the second second	m m s, or his	eters; hum inimally im 8 8 ent; other	nan activi npacted t 7 7	ities have only his zone. 6 6	meters; hum impacted the 5 5 Total from	an activi e zone a 4 4 4 m front	ties have great deal. 3	6 mete disturb to man 2 2 from ba	rs; little o ed vegeta -induced	r no un- ation due activities. 0 0 0 2 = 81
VEG. ZONE (undisturbed veg. Is trees, shrubs, and non- woody macro- phytes) LEFT: 1 RIGHT: 1	tative zone is human activiti roadbeds, clea crops) have ne zone. 10 10 Max Pool De Average Cha	 >18 meters; ies (parking liancuts, lawns ot impacted for the second second	r is prese (Toe of	eters; hurr inimally im 8 8 ent; other Banks)	nan activi npacted t 7 7 7 rwise "N	ities have only his zone. 6 6 A")cm	meters; hum impacted the 5 5 Total from	an activi e zone a 4 4 4 m front	ties have great deal. 3 _53_+ Total	6 mete disturb to man 2 2 from ba	rs; little o ed vegeta -induced	r no un- ation due activities. 0 0 2 = 81
VEG. ZONE (undisturbed veg. Is trees, shrubs, and non- woody macro- phytes) LEFT: 1 RIGHT: 1 TOTAL: (max=160) Average Width → What is the o □ Deciduous □ C	tative zone is human activiti roadbeds, clea crops) have ne zone. 10 10 Max Pool De Average Cha Intact Rip Ve dominant veg	 >18 meters; ies (parking liarcuts, lawns ot impacted for the second second	r is prese (Toe of Done (m)	eters; hurr inimally im 8 8 ent; other Banks) Left he reach?	nan activi npacted t 7 7 7 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8	ities have only his zone. 6 6 A")cm _m 1 m Estimated age	meters; hum impacted the 5 5 Total from Score Pe	4 4 4 m front ercentag Right 	ties have great deal. 3 _53_+ Total	6 mete disturb to man 2 2 from ba re /160 2 m rs5	rs; little o ed vegeta -induced 1 1 ack 28 K 100	r no un- ation due activities. 0 0 = 81 50.6 %
VEG. ZONE (undisturbed veg. Is trees, shrubs, and non- woody macro- phytes) LEFT: 1 RIGHT: 1 TOTAL: (max=160) Average Width → What is the o	tative zone is human activiti roadbeds, clea crops) have ne zone. 10 10 Max Pool De Average Cha Intact Rip Ve dominant veg Coniferous (pin	 >18 meters; ies (parking liarcuts, lawns ot impacted for the second second	m s, or his r is prese (Toe of 1 one (m) pe in th □ Mixed	eters; hum inimally im 8 8 ent; other Banks) Banks) Left he reach?	nan activi npacted t 7 7 7 8 wise "N.	ities have only his zone. 6 6 A")cm _m 1 m Estimated age	meters; hum impacted the 5 5 Total from Score Per e of forest: rata (e.g, can	4 4 4 m front ercentag Right >50 y opy, sub	ties have great deal. 3 <u>53</u> + Total ge= Total Scor 1 rs25-50 yi canopy, shrub,	6 mete disturb to man 2 2 from ba re /160) m rs5 herb (4	rs; little o ed vegeta -induced 1 ack 28 (100 - -25 yrs - max))_	r no un- ation due activities. 0 0 = 81 50.6 % X_<5 yrs
VEG. ZONE (undisturbed veg. Is trees, shrubs, and non- woody macro- phytes) LEFT: 1 RIGHT: 1 TOTAL: (max=160) Average Width → What is the construction Deciduous □ Construction	tative zone is human activiti roadbeds, clea crops) have no zone. 10 10 Max Pool De Average Cha Intact Rip Ve dominant veg coniferous (pin e Shading (%) er, middle, u	 >18 meters; ies (parking liarcuts, lawns ot impacted for the second second	m s, or his is prese (Toe of one (m) pe in th □ Mixed) Indic	eters; hum inimally im 8 8 ent; other Banks) Banks) Left he reach?	nan activi npacted t 7 7 wise "N ? ased on	ities have only his zone. 6 6 A")cm _m 1 m Estimated age Number of sta a cloudless day	meters; hum impacted the 5 5 Total from Score Per e of forest: rata (e.g, can	4 4 4 m front ercentag Right 	ties have great deal. 3 <u>53</u> + Total ge= Total Scor 1 rs25-50 yi canopy, shrub, n. Fill in squa	6 mete disturb to man 2 2 from ba re /160) m rs5 herb (4 are that	rs; little o ed vegeta -induced (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	r no un- ation due activities. 0 0 = 81 50.6 % X_<5 yrs

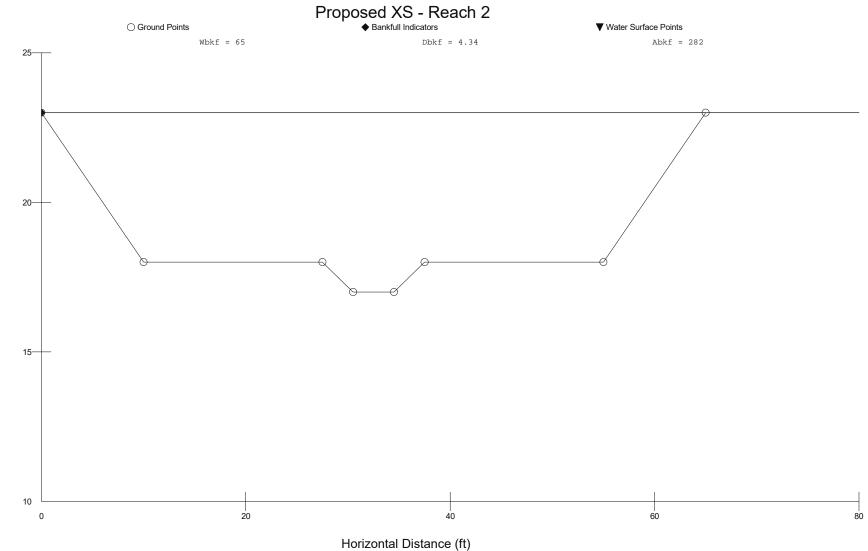
Appendix E


Design Computations



Elevation (ft)

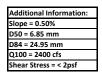
							R	EACH 1 - PROI	POSED HY									
ELEV	DEPTH	AREA	WET PER	WIDTH	HYD RAD	MEAN D	SLOPE	ROUGH	R/D84	VELOCITY	U/U*	U^2/2g	DISCHARGE	SHEAR	POWER	POWER/W	FROUDE	TRANSPORT
(ft)	(ft)	(sq ft)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	[n] (ft^(1/6))	.,	(fps)	0,0	(ft)	(cfs)	(psf)	(lb/s)	(lb/ft/s)		(lb/s)
18.1	0.1	0.43	4.63	4.6	0.09	0.09	0.00437	0.0499	1.1	0.4	3.51	0	0.17	0.02	0.05	0.01	0.23	0
18.2	0.2	0.92	5.26	5.2	0.17	0.18	0.00437	0.0384	2.08	0.79	5.08	0.01	0.72	0.05	0.2	0.04	0.33	0
18.3	0.3	1.47	5.9	5.8	0.25	0.25	0.00437	0.03451	3.05	1.13	6.02	0.02	1.66	0.07	0.45	0.08	0.4	0
18.4	0.4	2.08	6.53	6.4	0.32	0.32	0.00437	0.03267	3.91	1.41	6.63	0.03	2.93	0.09	0.8	0.12	0.44	0
18.5	0.5	2.75	7.16	7	0.38	0.39	0.00437	0.03161	4.64	1.63	7.05	0.04	4.49	0.1	1.22	0.17	0.46	0
18.6	0.6	3.48	7.79	7.6	0.45	0.46	0.00437	0.0307	5.5	1.88	7.47	0.05	6.54	0.12	1.78	0.23	0.49	0.15
18.7	0.7	4.27	8.43	8.2	0.51	0.52	0.00437	0.03011	6.23	2.08	7.78	0.07	8.9	0.14	2.43	0.3	0.51	0.34
18.8	0.8	5.12	9.06	8.8	0.57	0.58	0.00437	0.02963	6.96	2.28	8.05	0.08	11.67	0.16	3.18	0.36	0.53	0.64
18.9	0.9	6.03	9.69	9.4	0.62	0.64	0.00437	0.0293	7.57	2.44	8.26	0.09	14.71	0.17	4.01	0.43	0.54	1
19	1	7	10.32	10	0.68	0.7	0.00437	0.02896	8.31	2.62	8.48	0.11	18.37	0.19	5.01	0.5	0.55	1.56
19.1	1.1	8.03	10.96	10.6	0.73	0.76	0.00437	0.02871	8.92	2.77	8.66	0.12	22.28	0.2	6.08	0.57	0.56	2.17
19.2 19.3	1.2 1.3	9.12 10.27	11.59 12.22	11.2 11.8	0.79	0.81	0.00437	0.02845	9.65 10.26	2.95 3.1	8.85 9	0.14 0.15	26.92 31.79	0.22 0.23	7.34 8.67	0.66	0.58	3.04 3.94
19.3	1.3	11.48	12.22	11.8	0.84	0.87	0.00437	0.02820	10.20	3.24	9.14	0.13	37.15	0.23	10.13	0.73	0.58	4.98
19.4	1.4	12.75	13.49	12.4	0.95	0.98	0.00437	0.02303	11.61	3.4	9.31	0.10	43.38	0.24	11.83	0.91	0.61	6.39
19.6	1.6	17.47	47.93	47.4	0.36	0.37	0.00437	0.03192	4.4	1.56	6.92	0.04	27.21	0.1	7.42	0.16	0.45	0
19.7	1.7	22.23	48.38	47.8	0.46	0.47	0.00437	0.03059	5.62	1.91	7.52	0.06	42.55	0.13	11.6	0.24	0.49	1.07
19.8	1.8	27.03	48.83	48.2	0.55	0.56	0.00437	0.02978	6.72	2.22	7.96	0.08	59.87	0.15	16.33	0.34	0.52	2.95
19.9	1.9	31.87	49.28	48.6	0.65	0.66	0.00437	0.02912	7.94	2.53	8.37	0.1	80.7	0.18	22.01	0.45	0.55	6.32
20	2	36.75	49.72	49	0.74	0.75	0.00437	0.02866	9.04	2.8	8.69	0.12	103.07	0.2	28.11	0.57	0.57	10.53
20.1	2.1	41.67	50.17	49.4	0.83	0.84	0.00437	0.0283	10.14	3.07	8.97	0.15	127.79	0.23	34.85	0.71	0.59	15.84
20.2	2.2	46.63	50.62	49.8	0.92	0.94	0.00437	0.028	11.24	3.32	9.23	0.17	154.8	0.25	42.21	0.85	0.6	22.19
20.3	2.3	51.63	51.06	50.2	1.01	1.03	0.00437	0.02775	12.34	3.56	9.46	0.2	184.05	0.28	50.19	1	0.62	29.56
20.4	2.4	56.67	51.51	50.6	1.1	1.12	0.00437	0.02754	13.44	3.8	9.67	0.22	215.5	0.3	58.76	1.16	0.63	37.92
20.5	2.5 2.6	61.75 66.87	51.96 52.41	51 51.4	1.19 1.28	1.21 1.3	0.00437	0.02735 0.02719	14.54 15.64	4.03 4.26	9.86 10.04	0.25	249.12 284.87	0.32	67.93 77.68	1.33 1.51	0.65	47.23 57.46
20.0	2.0	72.03	52.85	51.4	1.28	1.39	0.00437	0.02713	16.61	4.20	10.04	0.28	320.99	0.33	87.53	1.69	0.67	67.38
20.7	2.7	77.23	53.3	52.2	1.45	1.33	0.00437	0.02694	17.71	4.40	10.13	0.31	360.86	0.37	98.4	1.89	0.68	79.31
20.9	2.9	82.47	53.75	52.6	1.53	1.57	0.00437	0.02684	18.69	4.86	10.48	0.37	400.88	0.42	109.32	2.08	0.68	90.73
21	3	87.75	54.2	53	1.62	1.66	0.00437	0.02674	19.79	5.07	10.62	0.4	444.8	0.44	121.29	2.29	0.69	104.3
21.1	3.1	93.07	54.64	53.4	1.7	1.74	0.00437	0.02666	20.77	5.25	10.74	0.43	488.67	0.46	133.25	2.5	0.7	117.18
21.2	3.2	98.43	55.09	53.8	1.79	1.83	0.00437	0.02657	21.87	5.45	10.86	0.46	536.57	0.49	146.32	2.72	0.71	132.35
21.3	3.3	103.83	55.54	54.2	1.87	1.92	0.00437	0.02651	22.84	5.63	10.97	0.49	584.24	0.51	159.32	2.94	0.72	146.65
21.4	3.4	109.27	55.98	54.6	1.95	2	0.00437	0.02644	23.82	5.8	11.07	0.52	633.76	0.53	172.82	3.17	0.72	161.63
21.5	3.5	114.75	56.43	55	2.03	2.09	0.00437	0.02639	24.8	5.97	11.17	0.55	685.12	0.55	186.82	3.4	0.73	177.26
21.6 21.7	3.6	120.27	56.88 57.33	55.4	2.11	2.17	0.00437	0.02633	25.78	6.14 6.33	11.27 11.37	0.59	738.31	0.58	201.33 217.04	3.63 3.89	0.73	193.56 212.5
21.7	3.7 3.8	125.83 131.43	57.33	55.8 56.2	2.2	2.26	0.00437	0.02628	26.87 27.73	6.47	11.37	0.62	795.93 850.19	0.6	217.04	4.13	0.74	212.5
21.8	3.9	131.43	58.22	56.6	2.27	2.34	0.00437	0.02024	28.71	6.63	11.43	0.68	908.87	0.64	247.84	4.13	0.75	246.43
21.9	4	142.75	58.67	57	2.33	2.42	0.00437	0.02616	29.68	6.79	11.55	0.08	969.38	0.66	264.34	4.58	0.75	265.36
22.1	4.1	148.47	59.11	57.4	2.51	2.59	0.00437	0.02612	30.66	6.95	11.69	0.75	1031.71	0.68	281.33	4.9	0.76	284.95
22.2	4.2	154.23	59.56	57.8	2.59	2.67	0.00437	0.02608	31.64	7.11	11.77	0.78	1095.86	0.71	298.83	5.17	0.77	305.19
22.3	4.3	160.03	60.01	58.2	2.67	2.75	0.00437	0.02605	32.62	7.26	11.84	0.82	1161.83	0.73	316.82	5.44	0.77	326.09
22.4	4.4	165.87	60.46	58.6	2.74	2.83	0.00437	0.02602	33.47	7.39	11.91	0.85	1226.46	0.75	334.44	5.71	0.77	345.21
22.5	4.5	171.75	60.9	59	2.82	2.91	0.00437	0.02599	34.45	7.55	11.98	0.88	1295.99	0.77	353.4	5.99	0.78	367.36
22.6	4.6	177.67	61.35	59.4	2.9	2.99	0.00437	0.02597	35.43	7.7	12.05	0.92	1367.35	0.79	372.86	6.28	0.78	390.16
22.7	4.7	183.63	61.8	59.8	2.97	3.07	0.00437	0.02594	36.28	7.83	12.11	0.95	1437.13	0.81	391.89	6.55	0.79	410.99
22.8	4.8	189.63	62.24	60.2	3.05	3.15	0.00437	0.02592	37.26	7.97	12.17	0.99	1512.05	0.83	412.32	6.85 7.13	0.79	435.04
22.9 23	4.9 5	195.67 201.75	62.69 63.14	60.6 61	3.12 3.2	3.23 3.31	0.00437	0.0259 0.02588	38.11 39.09	8.1 8.25	12.23 12.29	1.02	1585.25 1663.75	0.85	432.28 453.68	7.13	0.79	457.01 482.31
23.1	5.1	201.75	63.59	61.4	3.2	3.39	0.00437	0.02586	39.09	8.25	12.29	1.08	1740.36	0.87	455.68	7.44	0.8	505.41
23.2	5.2	214.03	64.03	61.8	3.34	3.46	0.00437	0.02584	40.8	8.5	12.34	1.05	1818.65	0.85	495.92	8.02	0.81	529.05
23.3	5.3	220.23	64.48	62.2	3.42	3.54	0.00437	0.02582	41.78	8.64	12.45	1.12	1902.5	0.93	518.79	8.34	0.81	556.21
23.4	5.4	226.47	64.93	62.6	3.49	3.62	0.00437	0.02581	42.63	8.76	12.5	1.19	1984.22	0.95	541.07	8.64	0.81	580.99
23.5	5.5	232.75	65.38	63	3.56	3.69	0.00437	0.02579	43.49	8.88	12.55	1.23	2067.64	0.97	563.82	8.95	0.81	606.32
23.6	5.6	239.07	65.82	63.4	3.63	3.77	0.00437	0.02578	44.34	9	12.6	1.26	2152.73	0.99	587.02	9.26	0.82	632.19
23.7	5.7	245.43	66.27	63.8	3.7	3.85	0.00437	0.02576	45.2	9.12	12.65	1.29	2239.52	1.01	610.69	9.57	0.82	658.62
23.8	5.8	251.83	66.72	64.2	3.77	3.92	0.00437	0.02575	46.05	9.24	12.69	1.33	2328	1.03	634.82	9.89	0.82	685.59
23.9	5.9	258.27	67.16	64.6	3.85	4	0.00437	0.02573	47.03	9.38	12.74	1.37	2422.54	1.05	660.6	10.23	0.83	716.46

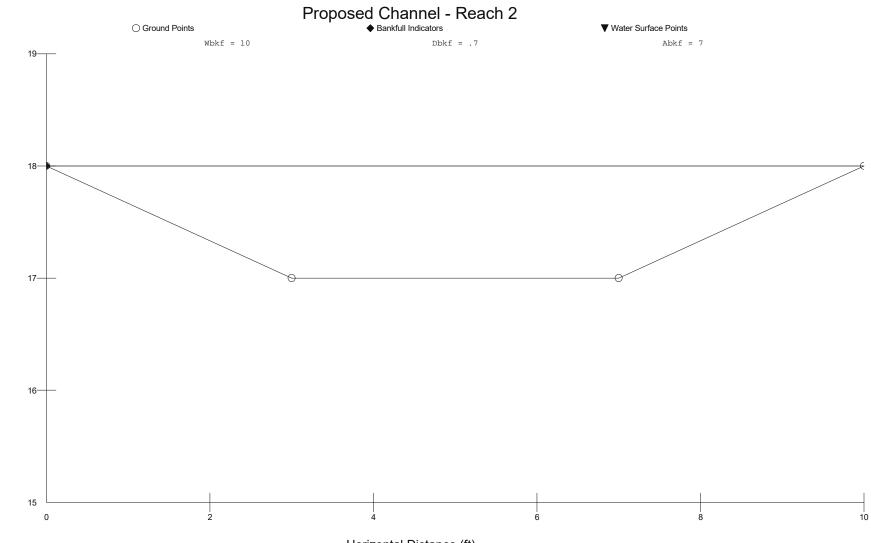


Horizontal Distance (ft)

Elevation (ft)

	1						/\$1\$				1 - PROPOSED	REACH							
	TRANSPORT	EPTH AREA WET PER WIDTH HYD RAD MEAN D SLOPE ROUGH R/D84 VELOCITY U/U* U^2/2g DISCHARGE SHEAR POWER POWER/W FROUDE TRANSPORT															DEPTH	ELEV	
Additional Information:	(lb/s)		(lb/ft/s)	(lb/s)	(psf)	(cfs)	(ft)		(fps)	-	[n] (ft^(1/6))	(ft/ft)	(ft)	(ft)	(ft)	(ft)	(sq ft)	(ft)	(ft)
Slope = 0.437%	0	0.23	0.01	0.05	0.02	0.17	0	3.51	0.4	1.1	0.0499	0.00437	0.09	0.09	4.6	4.63	0.43	0.1	18.1
D50 = 6.85 mm	0	0.33	0.04	0.2	0.05	0.72	0.01	5.08	0.79	2.08	0.0384	0.00437	0.18	0.17	5.2	5.26	0.92	0.2	18.2
D84 = 24.95 mm	0	0.4	0.08	0.45	0.07	1.66	0.02	6.02	1.13	3.05	0.03451	0.00437	0.25	0.25	5.8	5.9	1.47	0.3	18.3
	0	0.44	0.12	0.8	0.09	2.93	0.03	6.63	1.41	3.91	0.03267	0.00437	0.32	0.32	6.4	6.53	2.08	0.4	18.4
	0	0.46	0.17	1.22	0.1	4.49	0.04	7.05	1.63	4.64	0.03161	0.00437	0.39	0.38	7	7.16	2.75	0.5	18.5
	0.15	0.49	0.23	1.78	0.12	6.54	0.05	7.47	1.88	5.5	0.0307	0.00437	0.46	0.45	7.6	7.79	3.48	0.6	18.6
	0.34	0.51	0.3	2.43	0.14	8.9	0.07	7.78	2.08	6.23	0.03011	0.00437	0.52	0.51	8.2	8.43	4.27	0.7	18.7
	0.64	0.53	0.36	3.18	0.16	11.67	0.08	8.05	2.28	6.96	0.02963	0.00437	0.58	0.57	8.8	9.06	5.12	0.8	18.8
	1	0.54	0.43	4.01	0.17	14.71	0.09	8.26	2.44	7.57	0.0293	0.00437	0.64	0.62	9.4	9.69	6.03	0.9	18.9
	1.56	0.55	0.5	5.01	0.19	18.37	0.11	8.48	2.62	8.31	0.02896	0.00437	0.7	0.68	10	10.32	7	1	19
	2.17	0.56	0.57	6.08	0.2	22.28	0.12	8.66	2.77	8.92	0.02871	0.00437	0.76	0.73	10.6	10.96	8.03	1.1	19.1
	3.04	0.58	0.66	7.34	0.22	26.92	0.14	8.85	2.95	9.65	0.02845	0.00437	0.81	0.79	11.2	11.59	9.12	1.2	19.2
	3.94	0.58	0.73	8.67	0.23	31.79	0.15	9	3.1	10.26	0.02826	0.00437	0.87	0.84	11.8	12.22	10.27	1.3	19.3
	4.98	0.59	0.82	10.13	0.24	37.15	0.16	9.14	3.24	10.87	0.02809	0.00437	0.93	0.89	12.4	12.85	11.48	1.4	19.4

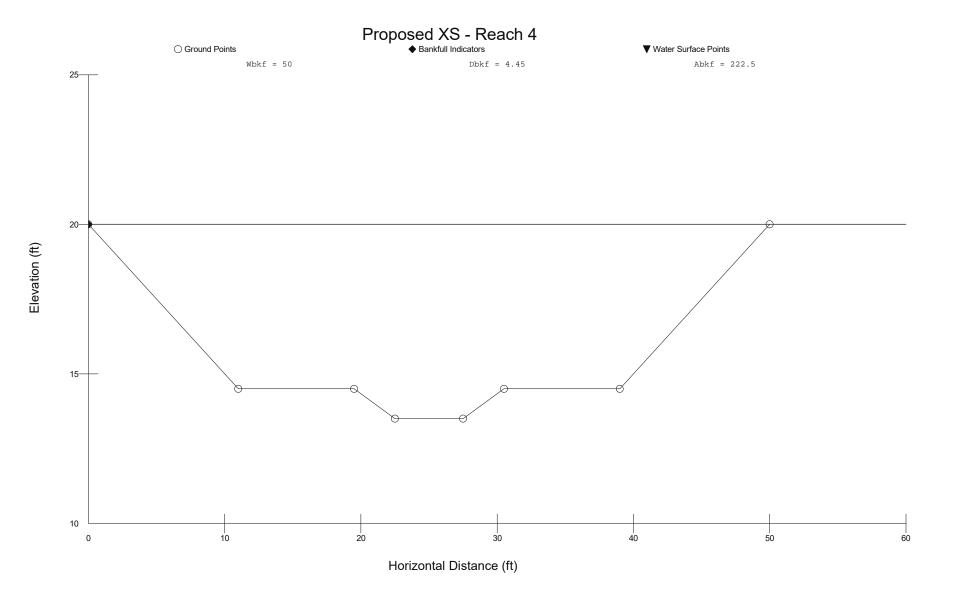

Additional Information:
lope = 0.437%
050 = 6.85 mm
084 = 24.95 mm



Elevation (ft)

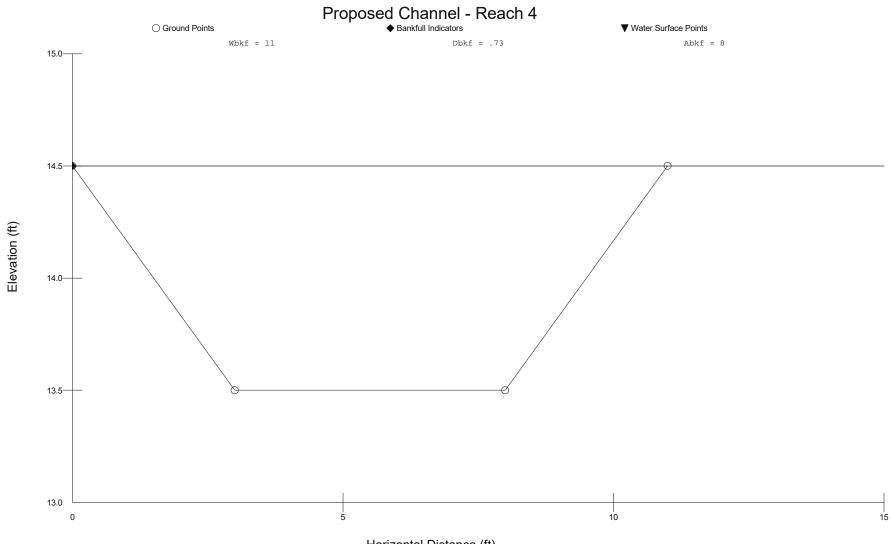
ш

							R	EACH 2 - PROF	POSED HY	DRAULIC A	NALYSIS							
ELEV	DEPTH	AREA	WET PER	WIDTH	HYD RAD	MEAN D	SLOPE	ROUGH	R/D84	VELOCITY	U/U*	U^2/2g	DISCHARGE	SHEAR	POWER	POWER/W	FROUDE	TRANSPORT
(ft)	(ft)	(sq ft)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	[n] (ft^(1/6))	.,	(fps)	-,-	(ft)	(cfs)	(psf)	(lb/s)	(lb/ft/s)		(lb/s)
17.1	0.1	0.43	4.63	4.6	0.09	0.09	0.005	0.0499	1.1	0.42	3.51	0	0.18	0.03	0.06	0.01	0.25	0
17.2	0.2	0.92	5.26	5.2	0.17	0.18	0.005	0.0384	2.08	0.84	5.08	0.01	0.10	0.05	0.00	0.01	0.35	0
17.3	0.3	1.47	5.9	5.8	0.25	0.25	0.005	0.03451	3.05	1.21	6.02	0.02	1.78	0.08	0.55	0.1	0.43	0.03
17.4	0.4	2.08	6.53	6.4	0.32	0.32	0.005	0.03267	3.91	1.51	6.63	0.04	3.13	0.1	0.98	0.15	0.47	0
17.5	0.5	2.75	7.16	7	0.38	0.39	0.005	0.03161	4.64	1.74	7.05	0.05	4.8	0.12	1.5	0.21	0.49	0
17.6	0.6	3.48	7.79	7.6	0.45	0.46	0.005	0.0307	5.5	2.01	7.47	0.06	7	0.14	2.18	0.29	0.52	0.33
17.7	0.7	4.27	8.43	8.2	0.51	0.52	0.005	0.03011	6.23	2.23	7.78	0.08	9.52	0.16	2.97	0.36	0.54	0.67
17.8	0.8	5.12	9.06	8.8	0.57	0.58	0.005	0.02963	6.96	2.44	8.05	0.09	12.49	0.18	3.9	0.44	0.56	1.16
17.9	0.9	6.03	9.69	9.4	0.62	0.64	0.005	0.0293	7.57	2.61	8.26	0.11	15.73	0.19	4.91	0.52	0.57	1.73
18	1	7	10.32	10	0.68	0.7	0.005	0.02896	8.31	2.81	8.48	0.12	19.65	0.21	6.13	0.61	0.59	2.57
18.1	1.1	11.52	45.77	45.4	0.25	0.25	0.005	0.03451	3.05	1.21	6.02	0.02	13.92	0.08	4.34	0.1	0.43	0.22
18.2	1.2	16.08	46.22	45.8	0.35	0.35	0.005	0.0321	4.28	1.63	6.85	0.04	26.15	0.11	8.16	0.18	0.48	0
18.3	1.3	20.68	46.67	46.2	0.44	0.45	0.005	0.03081	5.37	1.97	7.41	0.06	40.81	0.14	12.73	0.28	0.52	1.77
18.4	1.4	25.32	47.11	46.6	0.54	0.54	0.005	0.02986	6.6	2.33	7.92	0.08	59.11	0.17	18.44	0.4	0.56	4.89
18.5	1.5	30	47.56	47	0.63	0.64	0.005	0.02924	7.7	2.64	8.3	0.11	79.26	0.2	24.73	0.53	0.58	9.17
18.6	1.6	34.72	48.01	47.4	0.72	0.73	0.005	0.02876	8.8	2.94	8.62	0.13	101.95	0.22	31.81	0.67	0.61	14.82
18.7	1.7	39.48	48.46	47.8	0.81	0.83	0.005	0.02837	9.89	3.22	8.91	0.16	127.08	0.25	39.65	0.83	0.62	21.79
18.8	1.8	44.28	48.9	48.2	0.91	0.92	0.005	0.02803	11.12	3.52	9.2	0.19	155.92	0.28	48.65	1.01	0.65	30.98
18.9	1.9	49.12	49.35	48.6	1	1.01	0.005	0.02778	12.22	3.78	9.43	0.22	185.88	0.31	58	1.19	0.66	40.54
19	2	54	49.8	49	1.08	1.1	0.005	0.02758	13.19	4.01	9.62	0.25	216.63	0.34	67.59	1.38	0.67	50.06
19.1	2.1	58.92	50.24	49.4	1.17	1.19	0.005	0.02739	14.29	4.26	9.82	0.28	251.04	0.36	78.33	1.59	0.69	61.79
19.2	2.2	63.88	50.69	49.8	1.26	1.28	0.005	0.02723	15.39	4.5	10	0.31	287.69	0.39	89.76	1.8	0.7	74.63
19.3	2.3	68.88	51.14	50.2	1.35	1.37	0.005	0.02708	16.49	4.74	10.17	0.35	326.54	0.42	101.88	2.03	0.71	88.53
19.4	2.4	73.92	51.59	50.6	1.43	1.46	0.005	0.02697	17.47	4.95	10.31	0.38	365.69	0.45	114.09	2.25	0.72	101.85
19.5	2.5	79	52.03	51	1.52	1.55	0.005	0.02685	18.57	5.17	10.46	0.42	408.79	0.47	127.54	2.5	0.73	117.73
19.6	2.6	84.12	52.48	51.4	1.6	1.64	0.005	0.02676	19.55	5.37	10.59	0.45	451.97	0.5	141.02	2.74	0.74	132.81
19.7	2.7	89.28	52.93	51.8	1.69	1.72	0.005	0.02667	20.64	5.59	10.72	0.49	499.27	0.53	155.77	3.01	0.75	150.61
19.8 19.9	2.8 2.9	94.48 99.72	53.37 53.82	52.2 52.6	1.77 1.85	1.81 1.9	0.005	0.02659	21.62 22.6	5.78 5.97	10.83 10.94	0.52	546.44 595.55	0.55	170.49 185.81	3.27 3.53	0.76	167.4 185
20	2.9	105	53.82	52.6	1.85	1.9	0.005	0.02652	22.6	6.16	10.94	0.55	646.58	0.58	201.73	3.53	0.76	203.39
20	3.1	110.32	54.27	53.4	2.02	2.07	0.005	0.02640	23.58	6.36	11.03	0.53	702.05	0.63	219.04	4.1	0.77	203.39
20.1	3.2	115.68	55.16	53.8	2.02	2.07	0.005	0.02639	24.08	6.54	11.10	0.67	757.01	0.66	236.19	4.1	0.78	244.89
20.2	3.3	121.08	55.61	54.2	2.18	2.23	0.005	0.02629	26.63	6.72	11.35	0.07	813.89	0.68	253.93	4.69	0.79	265.74
20.3	3.4	126.52	56.06	54.6	2.26	2.32	0.005	0.02623	27.61	6.9	11.33	0.74	872.68	0.08	272.28	4.05	0.75	287.39
20.4	3.5	132	56.5	55	2.34	2.4	0.005	0.0262	28.59	7.07	11.52	0.74	933.38	0.73	291.21	5.29	0.8	309.81
20.6	3.6	137.52	56.95	55.4	2.41	2.48	0.005	0.02617	29.44	7.22	11.59	0.81	993.05	0.75	309.83	5.59	0.81	330.38
20.7	3.7	143.08	57.4	55.8	2.49	2.56	0.005	0.02613	30.42	7.39	11.67	0.85	1057.48	0.78	329.93	5.91	0.81	354.3
20.8	3.8	148.68	57.85	56.2	2.57	2.65	0.005	0.02609	31.39	7.56	11.75	0.89	1123.81	0.8	350.63	6.24	0.82	379.01
20.9	3.9	154.32	58.29	56.6	2.65	2.73	0.005	0.02606	32.37	7.72	11.83	0.93	1192.05	0.83	371.92	6.57	0.82	404.5
21	4	160	58.74	57	2.72	2.81	0.005	0.02603	33.23	7.87	11.89	0.96	1258.93	0.85	392.79	6.89	0.83	427.83
21.1	4.1	165.72	59.19	57.4	2.8	2.89	0.005	0.026	34.2	8.03	11.96	1	1330.9	0.87	415.24	7.23	0.83	454.82
21.2	4.2	171.48	59.64	57.8	2.88	2.97	0.005	0.02597	35.18	8.19	12.03	1.04	1404.77	0.9	438.29	7.58	0.84	482.59
21.3	4.3	177.28	60.08	58.2	2.95	3.05	0.005	0.02595	36.04	8.33	12.09	1.08	1477.04	0.92	460.84	7.92	0.84	507.98
21.4	4.4	183.12	60.53	58.6	3.03	3.12	0.005	0.02592	37.01	8.49	12.16	1.12	1554.66	0.95	485.05	8.28	0.85	537.27
21.5	4.5	189	60.98	59	3.1	3.2	0.005	0.0259	37.87	8.63	12.21	1.16	1630.5	0.97	508.72	8.62	0.85	564.02
21.6	4.6	194.92	61.42	59.4	3.17	3.28	0.005	0.02588	38.72	8.76	12.27	1.19	1708.09	0.99	532.92	8.97	0.85	591.42
21.7	4.7	200.88	61.87	59.8	3.25	3.36	0.005	0.02586	39.7	8.92	12.33	1.23	1791.29	1.01	558.88	9.35	0.86	622.93
21.8	4.8	206.88	62.32	60.2	3.32	3.44	0.005	0.02585	40.56	9.05	12.38	1.27	1872.47	1.04	584.21	9.7	0.86	651.71
21.9	4.9	212.92	62.77	60.6	3.39	3.51	0.005	0.02583	41.41	9.18	12.43	1.31	1955.42	1.06	610.09	10.07	0.86	681.14
22	5	219	63.21	61	3.46	3.59	0.005	0.02581	42.27	9.32	12.48	1.35	2040.12	1.08	636.52	10.43	0.87	711.22
22.1	5.1	225.12	63.66	61.4	3.54	3.67	0.005	0.02579	43.24	9.47	12.54	1.39	2130.79	1.1	664.81	10.83	0.87	745.72
22.2	5.2	231.28	64.11	61.8	3.61	3.74	0.005	0.02578	44.1	9.59	12.59	1.43	2219.11	1.13	692.36	11.2	0.87	777.19
22.3	5.3	237.48	64.55	62.2	3.68	3.82	0.005	0.02577	44.95	9.72	12.63	1.47	2309.21	1.15	720.47	11.58	0.88	809.33
22.4	5.4	243.72	65	62.6	3.75	3.89	0.005	0.02575	45.81	9.85	12.68	1.51	2401.09	1.17	749.14	11.97	0.88	842.14
22.5	5.5	250	65.45	63	3.82	3.97	0.005	0.02574	46.66	9.98	12.72	1.55	2494.75	1.19	778.36	12.36	0.88	875.62
22.6	5.6	256.32	65.9	63.4	3.89	4.04	0.005	0.02573	47.52	10.11	12.77	1.59	2590.2	1.21	808.14	12.75	0.89	909.76
22.7	5.7	262.68	66.34	63.8	3.96	4.12	0.005	0.02572	48.37	10.23	12.81	1.63	2687.44	1.24	838.48	13.14	0.89	944.58
22.8	5.8	269.08	66.79	64.2	4.03	4.19	0.005	0.0257	49.23	10.36	12.86	1.67	2786.47	1.26	869.38	13.54	0.89	980.08
22.9	5.9	275.52	67.24	64.6	4.1	4.27	0.005	0.02569	50.08	10.48	12.9	1.71	2887.31	1.28	900.84	13.94	0.89	1016.26



Horizontal Distance (ft)

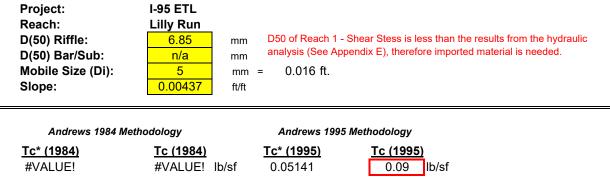
Elevation (ft)


	REACH 2 - PROPOSED CHANNEL HYDRAULIC ANALYSIS																	
ELEV (ft)	DEPTH (ft)	AREA (sq ft)	WET PER (ft)	WIDTH (ft)	HYD RAD (ft)	MEAN D (ft)	SLOPE (ft/ft)	ROUGH [n] (ft^(1/6))	R/D84	VELOCITY (fps)	U/U*	U^2/2g (ft)	DISCHARGE (cfs)	SHEAR (psf)	POWER (lb/s)	POWER/W (lb/ft/s)	FROUDE	TRANSPORT (lb/s)
17.1	0.1	0.43	4.63	4.6	0.09	0.09	0.005	0.0499	1.1	0.42	3.51	0	0.18	0.03	0.06	0.01	0.25	0
17.2	0.2	0.92	5.26	5.2	0.17	0.18	0.005	0.0384	2.08	0.84	5.08	0.01	0.77	0.05	0.24	0.05	0.35	0
17.3	0.3	1.47	5.9	5.8	0.25	0.25	0.005	0.03451	3.05	1.21	6.02	0.02	1.78	0.08	0.55	0.1	0.43	0.03
17.4	0.4	2.08	6.53	6.4	0.32	0.32	0.005	0.03267	3.91	1.51	6.63	0.04	3.13	0.1	0.98	0.15	0.47	0
17.5	0.5	2.75	7.16	7	0.38	0.39	0.005	0.03161	4.64	1.74	7.05	0.05	4.8	0.12	1.5	0.21	0.49	0
17.6	0.6	3.48	7.79	7.6	0.45	0.46	0.005	0.0307	5.5	2.01	7.47	0.06	7	0.14	2.18	0.29	0.52	0.33
17.7	0.7	4.27	8.43	8.2	0.51	0.52	0.005	0.03011	6.23	2.23	7.78	0.08	9.52	0.16	2.97	0.36	0.54	0.67
17.8	0.8	5.12	9.06	8.8	0.57	0.58	0.005	0.02963	6.96	2.44	8.05	0.09	12.49	0.18	3.9	0.44	0.56	1.16
17.9	0.9	6.03	9.69	9.4	0.62	0.64	0.005	0.0293	7.57	2.61	8.26	0.11	15.73	0.19	4.91	0.52	0.57	1.73

Additional Information:
Slope = 0.50%
D50 = 6.85 mm
D84 = 24.95 mm

							DI	ACH 4 - PRO										
ELEV	DEPTH	AREA	WET PER	WIDTH	HYD RAD	MEAN D	SLOPE	ROUGH	R/D84	VELOCITY		U^2/2g	DISCHARGE	SHEAR	POWER	POWER/W	FROUDE	TRANSPORT
(ft)	(ft)	(sq ft)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	[n] (ft^(1/6))	1000	(fps)	0,0	(ft)	(cfs)	(psf)	(lb/s)	(lb/ft/s)	TROODE	(lb/s)
13.6	0.1	0.53	5.63	5.6	0.09	0.09	0.0075	0.07448	0.69	0.35	2.35	0	0.18	0.04	0.09	0.02	0.2	0
13.7	0.2	1.12	6.26	6.2	0.18	0.18	0.0075	0.04851	1.37	0.85	4.06	0.01	0.95	0.08	0.44	0.02	0.35	0
13.8	0.3	1.77	6.9	6.8	0.26	0.26	0.0075	0.04218	1.98	1.24	4.96	0.02	2.2	0.12	1.03	0.15	0.43	0
13.9	0.4	2.48	7.53	7.4	0.33	0.34	0.0075	0.03926	2.51	1.57	5.55	0.04	3.88	0.15	1.82	0.25	0.47	0.21
14	0.5	3.25	8.16	8	0.4	0.41	0.0075	0.03735	3.05	1.87	6.02	0.05	6.08	0.19	2.85	0.36	0.51	0.68
14.1	0.6	4.08	8.79	8.6	0.46	0.47	0.0075	0.03617	3.51	2.12	6.36	0.07	8.65	0.22	4.05	0.47	0.55	1.39
14.2	0.7	4.97	9.43	9.2	0.53	0.54	0.0075	0.03511	4.04	2.4	6.71	0.09	11.93	0.25	5.58	0.61	0.58	2.61
14.3	0.8	5.92	10.06	9.8	0.59	0.6	0.0075	0.0344	4.5	2.63	6.97	0.11	15.59	0.28	7.29	0.74	0.6	4.06
14.4	0.9	6.93	10.69	10.4	0.65	0.67	0.0075	0.0338	4.95	2.86	7.21	0.13	19.8	0.3	9.27	0.89	0.62	5.91
14.5	1	8	11.32	11	0.71	0.73	0.0075	0.0333	5.41	3.08	7.43	0.15	24.61	0.33	11.52	1.05	0.63	8.18
14.6	1.1	10.82	28.77	28.4	0.38	0.38	0.0075	0.03783	2.9	1.79	5.89	0.05	19.32 29.57	0.18	9.04	0.32	0.51	1.86
14.7 14.8	1.2 1.3	13.68	29.22 29.67	28.8 29.2	0.47	0.47	0.0075	0.036	3.58 4.27	2.16	6.42	0.07	29.57	0.22	13.84 19.54	0.48	0.56	5.1 10.09
14.8	1.3	16.58 19.52	30.11	29.2	0.56	0.66	0.0075	0.03474	4.27	2.52	6.85 7.21	0.1	55.78	0.26	26.11	0.88	0.59	16.81
14.9	1.4	22.5	30.56	30	0.83	0.86	0.0075	0.03308	5.64	3.18	7.53	0.15	71.64	0.35	33.53	1.12	0.65	25.17
15.1	1.6	25.52	31.01	30.4	0.82	0.84	0.0075	0.03256	6.25	3.46	7.78	0.10	88.4	0.33	41.37	1.36	0.67	33.99
15.2	1.0	23.52	31.46	30.4	0.82	0.84	0.0075	0.03208	6.93	3.40	8.04	0.19	107.72	0.38	50.41	1.64	0.69	45.31
15.3	1.7	31.68	31.40	31.2	0.91	1.02	0.0075	0.03208	7.54	4.03	8.25	0.22	107.72	0.45	59.78	1.92	0.03	56.72
15.4	1.9	34.82	32.35	31.6	1.08	1.1	0.0075	0.03136	8.23	4.32	8.46	0.29	150.45	0.51	70.41	2.23	0.73	70.86
15.5	2	38	32.8	32	1.16	1.19	0.0075	0.03109	8.84	4.57	8.64	0.32	173.7	0.54	81.29	2.54	0.74	84.75
15.6	2.1	41.22	33.24	32.4	1.24	1.27	0.0075	0.03085	9.45	4.82	8.8	0.36	198.5	0.58	92.9	2.87	0.75	99.8
15.7	2.2	44.48	33.69	32.8	1.32	1.36	0.0075	0.03064	10.06	5.06	8.95	0.4	224.86	0.62	105.23	3.21	0.76	115.99
15.8	2.3	47.78	34.14	33.2	1.4	1.44	0.0075	0.03045	10.67	5.29	9.1	0.43	252.77	0.66	118.3	3.56	0.78	133.32
15.9	2.4	51.12	34.59	33.6	1.48	1.52	0.0075	0.03028	11.28	5.52	9.23	0.47	282.23	0.69	132.09	3.93	0.79	151.79
16	2.5	54.5	35.03	34	1.56	1.6	0.0075	0.03013	11.89	5.75	9.36	0.51	313.25	0.73	146.6	4.31	0.8	171.4
16.1	2.6	57.92	35.48	34.4	1.63	1.68	0.0075	0.03	12.42	5.94	9.47	0.55	344.21	0.76	161.09	4.68	0.81	189.76
16.2	2.7	61.38	35.93	34.8	1.71	1.76	0.0075	0.02987	13.03	6.16	9.59	0.59	378.26	0.8	177.03	5.09	0.82	211.51
16.3	2.8	64.88	36.37	35.2	1.78	1.84	0.0075	0.02977	13.56	6.35	9.69	0.63	412.12	0.83	192.87	5.48	0.83	231.8
16.4	2.9	68.42	36.82	35.6	1.86	1.92	0.0075	0.02965	14.17	6.57	9.8	0.67	449.22	0.87	210.24	5.91	0.84	255.72
16.5	3	72	37.27	36	1.93	2	0.0075	0.02956	14.71	6.75	9.89	0.71	486	0.9	227.45	6.32	0.84	277.96
16.6	3.1	75.62 79.28	37.72	36.4	2	2.08	0.0075	0.02948	15.24	6.93	9.97 10.07	0.75	524.22	0.94	245.33	6.74	0.85	301.13
16.7 16.8	3.2 3.3	79.28 82.98	38.16 38.61	36.8 37.2	2.08	2.15	0.0075	0.02939 0.02931	15.85 16.38	7.14	10.07	0.79	565.89 607.04	1.01	264.83 284.1	7.2	0.86	328.25 353.4
16.9	3.4	86.72	39.06	37.6	2.13	2.23	0.0075	0.02931	16.92	7.49	10.13	0.85	649.65	1.01	304.03	8.09	0.86	379.5
10.5	3.4	90.5	39.5	37.0	2.22	2.31	0.0075	0.02924	17.45	7.43	10.23	0.91	693.7	1.04	324.65	8.54	0.88	406.54
17.1	3.6	94.32	39.95	38.4	2.36	2.46	0.0075	0.02912	17.98	7.84	10.31	0.95	739.22	1.1	345.96	9.01	0.88	434.54
17.2	3.7	98.18	40.4	38.8	2.43	2.53	0.0075	0.02906	18.52	8.01	10.45	1	786.2	1.14	367.94	9.48	0.89	463.5
17.3	3.8	102.08	40.85	39.2	2.5	2.6	0.0075	0.029	19.05	8.18	10.52	1.04	834.66	1.17	390.62	9.96	0.89	493.43
17.4	3.9	106.02	41.29	39.6	2.57	2.68	0.0075	0.02895	19.58	8.34	10.59	1.08	884.59	1.2	413.99	10.45	0.9	524.33
17.5	4	110	41.74	40	2.64	2.75	0.0075	0.0289	20.12	8.51	10.66	1.12	936.02	1.24	438.06	10.95	0.9	556.21
17.6	4.1	114.02	42.19	40.4	2.7	2.82	0.0075	0.02886	20.57	8.65	10.71	1.16	986.27	1.26	461.57	11.43	0.91	585.14
17.7	4.2	118.08	42.64	40.8	2.77	2.89	0.0075	0.02881	21.11	8.81	10.77	1.21	1040.62	1.3	487.01	11.94	0.91	618.89
17.8	4.3	122.18	43.08	41.2	2.84	2.97	0.0075	0.02877	21.64	8.97	10.84	1.25	1096.48	1.33	513.15	12.46	0.92	653.64
17.9	4.4	126.32	43.53	41.6	2.9	3.04	0.0075	0.02873	22.1	9.11	10.89	1.29	1150.97	1.36	538.66	12.95	0.92	685.16
18	4.5	130.5	43.98	42	2.97	3.11	0.0075	0.02869	22.63	9.27	10.95	1.33	1209.8	1.39	566.19	13.48	0.93	721.82
18.1	4.6	134.72	44.42	42.4	3.03	3.18	0.0075	0.02866	23.09	9.41	11	1.37	1267.14	1.42	593.02	13.99	0.93	755.06
18.2	4.7	138.98	44.87	42.8	3.1	3.25	0.0075	0.02862	23.62	9.56	11.05	1.42	1328.97	1.45	621.96	14.53	0.93	793.64
18.3	4.8	143.28	45.32	43.2	3.16	3.32	0.0075	0.02859	24.08	9.7	11.1	1.46	1389.18	1.48	650.14	15.05	0.94	828.63
18.4 18.5	4.9 5	147.62 152	45.77 46.21	43.6 44	3.23 3.29	3.39 3.45	0.0075	0.02856	24.61 25.07	9.85 9.98	11.15 11.2	1.51 1.55	1454.04 1517.16	1.51 1.54	680.49 710.03	15.61 16.14	0.94	869.17 905.92
18.5	5.1	152	46.66	44	3.29	3.45	0.0075	0.02853	25.07	9.98	11.2	1.55	1517.16	1.54	740.23	16.14	0.95	905.92 943.51
18.6	5.1	156.42	46.66	44.4	3.35	3.52	0.0075	0.0285	25.53	10.11	11.24	1.59	1651.13	1.57	740.23	16.67	0.95	943.51 986.97
18.7	5.2	165.38	47.11	44.8	3.42	3.59	0.0075	0.02847	26.06	10.26	11.29	1.64	1718.62	1.63	804.31	17.25	0.95	1026.37
18.9	5.4	169.92	48	45.6	3.54	3.73	0.0075	0.02843	26.97	10.53	11.34	1.03	1718.02	1.66	836.58	18.35	0.96	1020.37
10.5	5.5	174.5	48.45	46	3.6	3.79	0.0075	0.0284	27.43	10.65	11.42	1.72	1857.95	1.68	869.52	18.9	0.96	1107.73
19.1	5.6	179.12	48.9	46.4	3.66	3.86	0.0075	0.02838	27.89	10.77	11.46	1.8	1929.8	1.71	903.15	19.46	0.97	1149.71
19.2	5.7	183.78	49.34	46.8	3.72	3.93	0.0075	0.02836	28.35	10.9	11.5	1.84	2003.13	1.74	937.47	20.03	0.97	1192.57
19.3	5.8	188.48	49.79	47.2	3.79	3.99	0.0075	0.02833	28.88	11.05	11.55	1.89	2081.86	1.77	974.31	20.64	0.97	1241.92
19.4	5.9	193.22	50.24	47.6	3.85	4.06	0.0075	0.02831	29.34	11.17	11.58	1.94	2158.23	1.8	1010.05	21.22	0.98	1286.64
19.5	6	198	50.69	48	3.91	4.13	0.0075	0.02829	29.79	11.29	11.62	1.98	2236.1	1.83	1046.5	21.8	0.98	1332.25
19.6	6.1	202.82	51.13	48.4	3.97	4.19	0.0075	0.02827	30.25	11.42	11.66	2.02	2315.48	1.86	1083.64	22.39	0.98	1378.75
19.7	6.2	207.68	51.58	48.8	4.03	4.26	0.0075	0.02825	30.71	11.54	11.7	2.07	2396.36	1.89	1121.5	22.98	0.99	1426.16
19.8	6.3	212.58	52.03	49.2	4.09	4.32	0.0075	0.02824	31.16	11.66	11.73	2.11	2478.77	1.91	1160.06	23.58	0.99	1474.46
19.9	6.4	217.52	52.47	49.6	4.15	4.39	0.0075	0.02822	31.62	11.78	11.77	2.16	2562.7	1.94	1199.34	24.18	0.99	1523.68

Additional Information: Slope = 0.75% D50 = 8.55 mm D84 = 40 mm Q100 = 2400 cfs Shear Stress = < 2psf

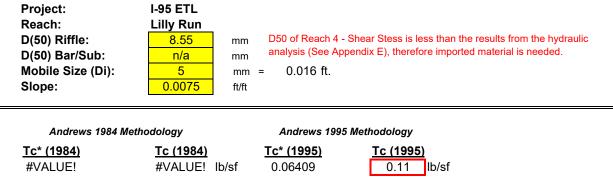


Horizontal Distance (ft)

	REACH 4 - PROPOSED CHANNEL HYDRAULIC ANALYSIS																	
ELEV	DEPTH	AREA	WET PER	WIDTH	HYD RAD	MEAN D	SLOPE	ROUGH	R/D84	VELOCITY	U/U*	U^2/2g	DISCHARGE	SHEAR	POWER	POWER/W	FROUDE	TRANSPORT
(ft)	(ft)	(sq ft)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	[n] (ft^(1/6))		(fps)		(ft)	(cfs)	(psf)	(lb/s)	(lb/ft/s)		(lb/s)
13.6	0.1	0.53	5.63	5.6	0.09	0.09	0.0075	0.07448	0.69	0.35	2.35	0	0.18	0.04	0.09	0.02	0.2	0
13.7	0.2	1.12	6.26	6.2	0.18	0.18	0.0075	0.04851	1.37	0.85	4.06	0.01	0.95	0.08	0.44	0.07	0.35	0
13.8	0.3	1.77	6.9	6.8	0.26	0.26	0.0075	0.04218	1.98	1.24	4.96	0.02	2.2	0.12	1.03	0.15	0.43	0
13.9	0.4	2.48	7.53	7.4	0.33	0.34	0.0075	0.03926	2.51	1.57	5.55	0.04	3.88	0.15	1.82	0.25	0.47	0.21
14	0.5	3.25	8.16	8	0.4	0.41	0.0075	0.03735	3.05	1.87	6.02	0.05	6.08	0.19	2.85	0.36	0.51	0.68
14.1	0.6	4.08	8.79	8.6	0.46	0.47	0.0075	0.03617	3.51	2.12	6.36	0.07	8.65	0.22	4.05	0.47	0.55	1.39
14.2	0.7	4.97	9.43	9.2	0.53	0.54	0.0075	0.03511	4.04	2.4	6.71	0.09	11.93	0.25	5.58	0.61	0.58	2.61
14.3	0.8	5.92	10.06	9.8	0.59	0.6	0.0075	0.0344	4.5	2.63	6.97	0.11	15.59	0.28	7.29	0.74	0.6	4.06
14.4	0.9	6.93	10.69	10.4	0.65	0.67	0.0075	0.0338	4.95	2.86	7.21	0.13	19.8	0.3	9.27	0.89	0.62	5.91

Additional Information:	
Slope = 0.75%	
D50 = 8.55 mm	
D84 = 40 mm	

Sediment Transport Analysis Andrews Methodology - Shear of Reach 1

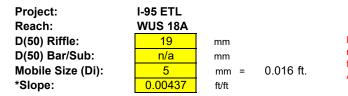

<u>Depth (1984)</u> #VALUE! ft. Depth (1995) 0.32 ft.

Andrews 1984 Methodology:

Tc* = 0.0834 x [(D50(riffle) / D50(bar)]^-0.872 Tc = Tc* x 1.65 x 62.4 x Di Depth = (Tc* x 1.65 x Di) / Slope

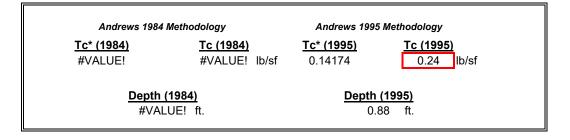
Andrews 1995 Methodology:

Sediment Transport Analysis Andrews Methodology - Shear of Reach 4


Depth (1984) #VALUE! ft. Depth (1995) 0.23 ft.

Andrews 1984 Methodology:

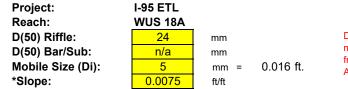
Tc* = 0.0834 x [(D50(riffle) / D50(bar)]^-0.872 Tc = Tc* x 1.65 x 62.4 x Di Depth = (Tc* x 1.65 x Di) / Slope


Andrews 1995 Methodology:

Sediment Transport Analysis Andrews Methodology - Max Channel Shear (Reach 1)

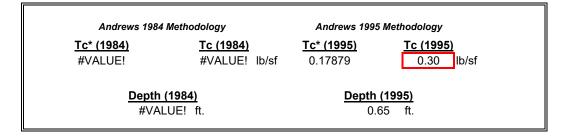
D50 required to meet the maximum channel shear results from the hydraulic analysis (See Appendix E).

*Slope of the steepest riffle to evaluate the max shear conditions



Andrews 1984 Methodology:

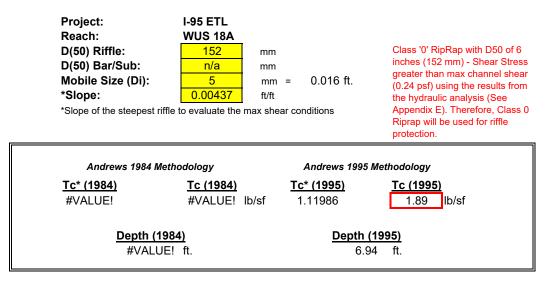
Tc* = 0.0834 x [(D50(riffle) / D50(bar)]^-0.872 Tc = Tc* x 1.65 x 62.4 x Di Depth = (Tc* x 1.65 x Di) / Slope


Andrews 1995 Methodology:

Sediment Transport Analysis Andrews Methodology - Max Channel Shear (Reach 4)

D50 required to meet the maximum channel shear results from the hydraulic analysis (See Appendix E).

*Slope of the steepest riffle to evaluate the max shear conditions

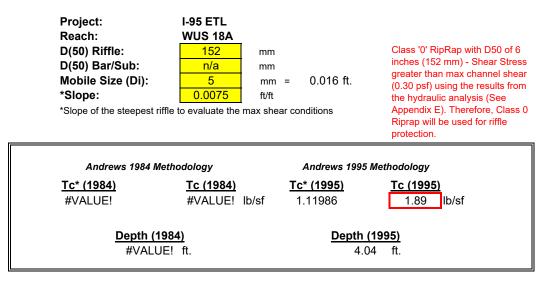


Andrews 1984 Methodology:

Tc* = 0.0834 x [(D50(riffle) / D50(bar)]^-0.872 Tc = Tc* x 1.65 x 62.4 x Di Depth = (Tc* x 1.65 x Di) / Slope

Andrews 1995 Methodology:

Sediment Transport Analysis Andrews Methodology - Shear of Class '0' Riprap (Reach 1)



Andrews 1984 Methodology:

Tc* = 0.0834 x [(D50(riffle) / D50(bar)]^-0.872 Tc = Tc* x 1.65 x 62.4 x Di Depth = (Tc* x 1.65 x Di) / Slope

Andrews 1995 Methodology:

Sediment Transport Analysis Andrews Methodology - Shear of Class '0' Riprap (Reach 4)

Andrews 1984 Methodology:

Tc* = 0.0834 x [(D50(riffle) / D50(bar)]^-0.872 Tc = Tc* x 1.65 x 62.4 x Di Depth = (Tc* x 1.65 x Di) / Slope

Andrews 1995 Methodology:

Plunge Pool Design at Lilly Run - Reach 2

Type I - Preformed Scour Hole (Depressed 1/2 Culvert Rise)

Using Empirical Preformed Scour Hole Equations from MDSHA Highway Drainage Manual, I-3-E-2:

D ₅₀ = ((0.0125d ² /TW)(Q ₁₀ /d ^{2.5}) ^{1.333}	where:	D ₅₀ =	Median stone diameter (ft)		
			d =	Pipe diameter (ft)	=	3.5
D ₅₀ =	0.09 ft		TW =	Tailwater depth (ft)	=	3.5
			Q =	Design pipe flow (cfs)	=	38.53
C =	Basin Length (ft)	=	31.5			
A =	Basin Inlet Width (ft)	=	28			
B =	Basin Outlet Width (ft)	=	28			
D =	Basin Riprap Thickness (ft)	=	1	*		
E =	Culvert Span (ft)	=	3.5			
F =	Basin Depression (ft)	=	3.5			
d =	Culvert Diameter or Span (ft)	=	3.5			
D ₅₀ =	Median Stone Diameter (ft)	=	0.5	Class 0 Riprap		

Notes: * Use 12" as nominal placement thickness for Class 0.

Plunge Pool Design at Lilly Run - Reach 3

Type I - Preformed Scour Hole (Depressed 1/2 Culvert Rise)

Using Empirical Preformed Scour Hole Equations from MDSHA Highway Drainage Manual, I-3-E-2:

D ₅₀ =	(0.0125d ² /TW)(Q ₁₀ /d ^{2.5}) ^{1.333}	where:	D ₅₀ =	Median stone diameter (ft)		
			d =	Pipe diameter (ft)	=	2
D ₅₀ =	0.04 ft		TW =	Tailwater depth (ft)	=	2
			Q =	Design pipe flow (cfs)	=	8.56
C =	Basin Length (ft)	=	18			
A =	Basin Inlet Width (ft)	=	16			
B =	Basin Outlet Width (ft)	=	16			
D =	Basin Riprap Thickness (ft)	=	1	*		
E =	Culvert Span (ft)	=	2			
F =	Basin Depression (ft)	=	2			
d =	Culvert Diameter or Span (ft)	=	2			
D ₅₀ =	Median Stone Diameter (ft)	=	0.5	Class 0 Riprap		

Notes: * Use 12" as nominal placement thickness for Class 0.

Appendix F

Design Plans (under separate cover)

