

# **APPENDIX A** BENEFIT-COST ANALYSIS DISCUSSION



# 1. Executive Summary

This memorandum summarizes the approach used for conducting a Benefit-Cost Analysis (BCA) for *Access I-95: Driving Baltimore City's Growth*. Table 1 shows the project matrix, which describes baseline conditions, proposed improvements, types of impacts to all users/population affected by them, a summary of results, and a page reference in this memorandum. The cost effectiveness results show that with discount rate of 7%, the project is expected to generate \$553 million in benefits, which leads to a net present value of \$407 million. With that same discount rate, the benefit-cost ratio equals 3.79. The largest share of benefits is travel time savings, which amount to roughly 90% of the total. This result is driven by the sizable hours of vehicle delay in the no-build scenario of the travel demand model 2040 forecast. Other benefits include vehicle operating cost savings, health and mode diversion benefits from improved pedestrian accessibility and walk mode share, improved safety due to rail relocation, avoided emissions, and avoided maintenance costs. A sensitivity analysis was performed in order to test whether assumptions in the cost effectiveness assessment could significantly alter the direction and magnitude of results. The sensitivity analysis shows that all tested alternatives lead to healthy benefit-cost ratios and that the project remains cost effective.



## Think *Forward*

# Table 1: Project Matrix

| Current Status & Problem                                                                                                      | Changes to Baseline                                                                                               | Types of Impacts                                                                              | Population Affected                                            | Economic Benefit                                                 | Summary of<br>Results (7% disc.) |
|-------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------|----------------------------------|
| Limited Interstate 95 access<br>to and from the Port<br>Covington site<br>Roadway connectivity<br>within Port Covington as it | Widening of Mccomas<br>street to a three- to<br>four lane divided street<br>from Hanover street to<br>Key highway | Increased capacity<br>Increased travel speeds and<br>travel time<br>Reduced Vehicle Operating | Corridor users: (AADT)<br>trucks and autos in 2020<br>and 2040 | Monetized Value of<br>Reduced Travel Time                        | \$508,281,464                    |
| relates to the existing CSX<br>track<br>Limited Pedestrian access to                                                          | Additional lane along<br>Key Highway at the<br>intersection of                                                    | the Improved Accessibility                                                                    |                                                                | Monetized Value of<br>Change in Vehicle<br>Operating Costs       | \$28,372,103                     |
| and from the Port Covington<br>site and the adjacent<br>neighborhoods                                                         | vington McComas Street                                                                                            | Reduced costs of collisions from Rail Relocation                                              | Local, state and national population                           | Monetized Value of<br>Reduced Collisions                         | \$124,975                        |
| Current roadway facilities<br>do not support the rapid<br>development expected in<br>the Port Covington site.                 | I-95 Southbound and I-<br>95 Northbound off<br>ramps to McComas<br>Street                                         | Improved Pedestrian Access<br>Shift to active mode of<br>transportation                       | Local population                                               | Monetized health<br>benefits and benefits<br>from auto diversion | \$10,932,482                     |
|                                                                                                                               | CSX Track Relocation                                                                                              | Reduced air emissions generated by motor vehicles                                             | Local, state, region, and national population                  | Monetized Value of<br>Reduced Carbon<br>Emissions                | \$2,959,753                      |
|                                                                                                                               |                                                                                                                   |                                                                                               |                                                                | Monetized Value of<br>Reduced Non-Carbon<br>Emissions            | \$3,234,432                      |
|                                                                                                                               |                                                                                                                   | Avoided Costs for State of Good Repair (ramps)                                                | Government                                                     | Monetized Value of<br>Maintenance Costs                          | \$120,242                        |
|                                                                                                                               |                                                                                                                   | Additional Jobs from project construction and operations                                      | Local and regional population                                  | Economic Impact of<br>Jobs                                       | 2,383 job years                  |



# 2. Project Background

The Maryland Transportation Authority and the City of Baltimore are jointly seeking to improve access to and from I-95 in the vicinity of the Port Covington redevelopment area. The Port Covington project is located on 266 acres on the tip of the south Baltimore peninsula. This roadway infrastructure project is critical to support the significant economic growth expected from the Port Covington redevelopment, which is already underway, and protect the surrounding communities as well as the economic efficiency of the city, state, and region.

The Port Covington redevelopment project will revitalize 266 acres of under-utilized industrial land. The site is located on a peninsula bound by I-95 and the Middle Branch of the Patapsco River. Without critical infrastructure improvements for access to and from I-95 and the connecting roadway system, it is likely that the traffic produced by the development will cause disruptions and delays that will adversely impact operations at the Port of Baltimore and the neighboring communities.

The following project components are part of Phase I, for which FASTLANE grant funding is being requested in order to improve the infrastructure of the roadway network:

- a) <u>McComas Street at Key Highway Intersection</u>: The existing two lane section of Key Highway will be widened to accommodate a third southbound lane in order to alleviate an existing bottleneck for traffic to/from I-95. The existing CSX bridge, which will need to be reconstructed as a result of the I-95 southbound Off-Ramp to Key Highway, will be reconstructed in order to accommodate the widening along Key Highway. This improvement will also allow for enhanced pedestrian and bicycle access along Key Highway;
- b) <u>I-95 Southbound Off-Ramp to Key Highway:</u> The exit ramp to Key Highway will widen to a two-lane Off-Ramp after splitting off from I-95 to merge with McComas Street, where it will become a three-lane road, which will facilitate better traffic flow, reduce congestion from the interstate to Port Covington and the surrounding area, and avoid spill-back on the main I-95 lanes;
- c) <u>Hanover Street North of McComas Street</u>: Existing Hanover Street north of the McComas Street intersection is a four to five lane undivided roadway. Proposed improvements include widening Hanover Street in order to accommodate the widening of the Hanover Street On-Ramp to I-95 southbound, in addition to enhanced pedestrian facilities which extend north into the surrounding residential neighborhoods.
- d) <u>Relocated McComas Street between Hanover Street and Key Highway:</u> Existing McComas Street between Hanover Street and Key Highway consists of a three to four lane divided section Proposed improvements include shifting McComas Street south of I-95 in its entirety, including pedestrian facilities. Additional lanes will be added to the typical section in order to accommodate future traffic demand and connections to I-95;
- e) <u>I-95 Southbound and I-95 Northbound off ramps to McComas Street:</u> Off-Ramps to Hanover Street from I-95 (Southbound and northbound) will provide better interstate access for traffic from Port Covington;
- f) <u>CSX Track Relocation</u>: A proposed CSX track will cross over the I-95 Fort McHenry Tunnel and will act as a service track to existing Maryland Port Authority facilities. The rail relocation will allow for the existing CSX sidetrack south of I-95 to be removed which will eliminate two existing at-grade crossings within Port Covington, and prevent the creation of nine additional at-grade crossings.

# 3. Cost Effectiveness Analysis

This section describes the methodology for estimating benefits and costs of the Grand Parkway Segment I-2 project. In calculating the benefit-cost analysis, Cambridge Systematics Inc. (CS) followed Federal guidance regarding evaluation criteria, discount and monetization rates, and evaluation methods prescribed in the 2016 TIGER and FASTLANE guidance and supporting documents.

The BCA provides monetary benefits and costs, in present day dollars, associated with the project over a 40-year analysis period. The estimated benefits have been categorized by the five long-term outcomes listed in the BCA Resource Guide as follows: State of Good Repair, Economic Competitiveness, Quality of Life, Environmental Sustainability, and Safety. An effort was made to comply with all BCA guidelines and a conservative approach has been used for all assumptions.

# 3.1 Travel Demand

A Travel Demand Model (TDM) was estimated for the project area in Port Covington with a baseline (2012) and a no-build scenario (2040). The model was developed by the team conduction the National Environmental Policy Act (NEPA) evaluation, and was run by Cambridge Systematics in VISSIM software. The model encompasses the entire study area. A variety of metrics were estimated for impacted trips: for PM peak and AM peak times with existing conditions (2012) and in the no-build scenario (2014), the model metrics included vehicle miles traveled (VMT), vehicle hours traveled (VHT), vehicle hours of delay (VHD) for autos, trucks, and buses.

The results show a 2040 no-build scenario that is severely congested, with delays both in the network and outside of the simulated network, with potential peak spreading. Comparing total peak hour delay for 2012 and 2040, the travel demand model shows that it more than quadruples (from 1,772 to 7,417 hours of delay in the PM peak hour). This significant result is driven by the profound changes expected in the Port Covington site due to the new development planned in the area.

Truck traffic is also expected to be strongly affected in a no-build scenario. Truck delay also more than quadruples in the study area (from 187 to 769 delay hours in the PM peak), an outcome that does not even include potential spill-back delays in areas of I-95 outside of the simulation model. The model forecasts an 8% share of truck trips in the simulation study areas in 2040.

In order to the estimate the project benefits or costs, auto delay was broken down between commuting and leisure trips, using travel rates by trip purpose data from the 2009 National Household Travel Survey (NHTS)<sup>1</sup>. Breaking down trip purpose is important for the analysis as commuting trips are annualized using business days per year, and have a higher cost of travel time as indicated in the FASTLANE Benefit-Cost Analysis guidance<sup>2</sup>.

Annual figures for vehicle hours of delay were calculated by type of trip and by type of vehicle for 2012 and 2040, using the following formula:

$$VHD_{TT} = (PeakHours_pm * VHD_pm + PeakHours_am * VHD_am) * Annualization_{TT}$$

Where  $TT = \{Commute, Leisure, Truck\}$ , VHD is annual vehicle hours of delay, VHD\_pm and VHD\_am are the number of hours of delay in the AM or PM peak hour,  $PeakHours_pm$  and  $PeakHours_am$  are the number of

<sup>&</sup>lt;sup>2</sup> 2016 TIGER Benefit-Cost Analysis (BCA) Resource Guide supplement to the 2016 Benefit-Cost Analysis Guidance for Grant Applicants. Table 1. Recommended Monetized Values



<sup>&</sup>lt;sup>1</sup> Summary of Travel Trends: 2009 National Household Travel Survey. Available at: http://nhts.ornl.gov/2009/pub/stt.pdf

congested hours in the PM and AM peak, which are equal to 2 in the AM and 2 in the PM according to data from the regional travel demand model, and *Annualization* is the number of days per year for each trip type (365 for leisure and truck, and 250 for commuting trips). Annual trip delay for the 2012 baseline and 2040 no-build scenario were linearly interpolated in order to estimate delay for years in between both scenarios.

In order to estimate the impact of project, the assumptions for the Transportation Impact and Economic Return System (TIERS) tool, developed by Cambridge Systematics Inc., were used. The tool standardizes the approach to measuring project benefits at the planning-level when TDM data is unavailable based on ITE guidelines. The methodology classifies operational projects into minor, moderate, and major, as detailed in Table 2. For a project such as Access I-95, the impact is considered to be moderate, as it includes components such as adding turning lanes, interchange reconstruction, and adding a though lane.

|                                                             | Operational  |                 |
|-------------------------------------------------------------|--------------|-----------------|
| Project Type                                                | Impact Level | Delay Reduction |
| Increase Length of Turn Bay                                 | Minor        | 15%             |
| Increase the Turn Radius                                    | Minor        | 15%             |
| Striping Changes                                            | Minor        | 15%             |
| Signal Timing/Phasing Changes                               | Minor        | 15%             |
| Prohibit Left-Turn Movements                                | Minor        | 15%             |
| Prohibit On-Street Parking                                  | Minor        | 15%             |
| Adding Turn Lanes                                           | Moderate     | 30%             |
| Adding a Through Lane                                       | Moderate     | 30%             |
| Add a Traffic Signal                                        | Moderate     | 30%             |
| Add a Roundabout                                            | Moderate     | 30%             |
| Bridge Replacement                                          | Moderate     | 30%             |
| Interchange Reconstruction                                  | Moderate     | 30%             |
| Innovative Intersection (Continuous Flow Interchange, etc.) | Major        | 60%             |
| Grade Separation                                            | Major        | 60%             |

## Table 2: Operational Project Type and Impact Level Assumptions in TIERS

Source: TIERS Tool User Guide

Having identified the expected impact of the project on traffic delay during congested hours, a build scenario for 2040 using the expected delay reduction was estimated. Annual VHD by type of trip in the build scenario were calculated for years between 2022 (when all components of the project are expected to be opened to traffic) and 2040. A summary of vehicle hours of delay is shown in Table 3.



|      | Baseline                    |                              | Build                       |                              | Delay Savings                        |                                       |
|------|-----------------------------|------------------------------|-----------------------------|------------------------------|--------------------------------------|---------------------------------------|
| Year | Auto Delay<br>(hours daily) | Truck Delay<br>(hours daily) | Auto Delay<br>(hours daily) | Truck Delay<br>(hours daily) | Total hours<br>daily<br>(auto+truck) | Total hours<br>annual<br>(auto+truck) |
| 2012 | 5,540                       | 665                          | 5,540                       | 665                          | -                                    | -                                     |
| 2013 | 6,178                       | 740                          | 6,178                       | 740                          | -                                    | -                                     |
| 2014 | 6,815                       | 816                          | 6,815                       | 816                          | -                                    | -                                     |
| 2015 | 7,453                       | 891                          | 7,453                       | 891                          | -                                    | -                                     |
| 2016 | 8,091                       | 966                          | 8,091                       | 966                          | -                                    | -                                     |
| 2017 | 8,729                       | 1,042                        | 8,729                       | 1,042                        | -                                    | -                                     |
| 2018 | 9,366                       | 1,117                        | 9,366                       | 1,117                        | -                                    | -                                     |
| 2019 | 10,004                      | 1,193                        | 10,004                      | 1,193                        | -                                    | -                                     |
| 2020 | 10,642                      | 1,268                        | 10,642                      | 1,268                        | -                                    | -                                     |
| 2021 | 11,280                      | 1,344                        | 11,280                      | 1,344                        | -                                    | -                                     |
| 2022 | 11,918                      | 1,419                        | 8,342                       | 993                          | -4,001                               | -1,382,427                            |
| 2023 | 12,555                      | 1,495                        | 8,789                       | 1,046                        | -4,215                               | -1,456,356                            |
| 2024 | 13,193                      | 1,570                        | 9,235                       | 1,099                        | -4,429                               | -1,530,285                            |
| 2025 | 13,831                      | 1,645                        | 9,682                       | 1,152                        | -4,643                               | -1,604,214                            |
| 2026 | 14,469                      | 1,721                        | 10,128                      | 1,205                        | -4,857                               | -1,678,143                            |
| 2027 | 15,107                      | 1,796                        | 10,575                      | 1,257                        | -5,071                               | -1,752,071                            |
| 2028 | 15,744                      | 1,872                        | 11,021                      | 1,310                        | -5,285                               | -1,826,000                            |
| 2029 | 16,382                      | 1,947                        | 11,468                      | 1,363                        | -5,499                               | -1,899,929                            |
| 2030 | 17,020                      | 2,023                        | 11,914                      | 1,416                        | -5,713                               | -1,973,858                            |
| 2031 | 17,658                      | 2,098                        | 12,361                      | 1,469                        | -5,927                               | -2,047,787                            |
| 2032 | 18,296                      | 2,174                        | 12,807                      | 1,522                        | -6,141                               | -2,121,716                            |
| 2033 | 18,933                      | 2,249                        | 13,253                      | 1,574                        | -6,355                               | -2,195,645                            |
| 2034 | 19,571                      | 2,325                        | 13,700                      | 1,627                        | -6,569                               | -2,269,573                            |
| 2035 | 20,209                      | 2,400                        | 14,146                      | 1,680                        | -6,783                               | -2,343,502                            |
| 2036 | 20,847                      | 2,475                        | 14,593                      | 1,733                        | -6,997                               | -2,417,431                            |
| 2037 | 21,485                      | 2,551                        | 15,039                      | 1,786                        | -7,211                               | -2,491,360                            |
| 2038 | 22,122                      | 2,626                        | 15,486                      | 1,838                        | -7,425                               | -2,565,289                            |
| 2039 | 22,760                      | 2,702                        | 15,932                      | 1,891                        | -7,639                               | -2,639,218                            |
| 2040 | 23,398                      | 2,777                        | 16,379                      | 1,944                        | -7,853                               | -2,713,147                            |

Table 3: Vehicle Hours of Delay (model years=2012 and 2040)

The project useful life was considered to be approximately 30 years, therefore the estimation of the benefits and costs starts off in current time until year 2050. Since no demand model data is available beyond year 2040, no growth in delay beyond 2040 until 2050 was assumed, thus resulting in a conservative estimate of future delay.

# 3.2 Travel Time Savings



Travel Time savings were calculated based on the differences in annual delay by trip type between build and nobuild scenarios. The following formula was used for calculating travel time savings for each year between 2022 and 2050 (in 2015 \$):

$$TTS_{TT} = \Delta VHD_{TT} * AVO_{TT} * VOT_{TT}$$

Where *TTS* is Travel Time Savings, *VHD* is annual vehicle hours of delay, *AVO* is Average Vehicle Occupancy (for which 2015 American Community Survey (ACS) data for Baltimore Metropolitan Statistical Area was used for auto commuting trips, 2009 NHTS data used for non-work auto trips, and 1 was assumed for truck trips), and *VOT* is Value of Time, for which the recommended values in the FASTLANE BCA Resource Guide were used and expressed in 2015 dollars. In the formula, the types of trip include  $TT = \{Commute, Leisure, Truck\}$ . Table 4 summarizes the results in term of Travel Time Savings:



| Table | 4: | Travel | Time | Savings |
|-------|----|--------|------|---------|
|-------|----|--------|------|---------|

|          |               |                                      | Monetary Value of | NPV of Travel Time Savings |               |  |
|----------|---------------|--------------------------------------|-------------------|----------------------------|---------------|--|
|          | Calen-        | Change in Travel                     | Travel Time Cost  | 3%                         | 7%            |  |
| Year     | Year dar Year | Delay in Hours<br>(Build – No-build) | Saved/Wasted (in  | NPV =                      | NPV =         |  |
|          |               | (Bulla – No-bulla)                   | 2015\$)           | [J/(1+3%)^A]               | [J/(1+7%)^A]  |  |
| 5        | 2022          | -1,382,427                           | \$36,953,588      | \$31,876,490               | \$26,347,398  |  |
| 6        | 2023          | -1,456,356                           | \$38,929,751      | \$32,603,054               | \$25,940,537  |  |
| 7        | 2024          | -1,530,285                           | \$40,905,914      | \$33,260,252               | \$25,474,147  |  |
| 8        | 2025          | -1,604,214                           | \$42,882,077      | \$33,851,508               | \$24,957,759  |  |
| 9        | 2026          | -1,678,143                           | \$44,858,240      | \$34,380,106               | \$24,399,910  |  |
| 10       | 2027          | -1,752,071                           | \$46,834,403      | \$34,849,194               | \$23,808,236  |  |
| 11       | 2028          | -1,826,000                           | \$48,810,566      | \$35,261,791               | \$23,189,548  |  |
| 12       | 2029          | -1,899,929                           | \$50,786,729      | \$35,620,790               | \$22,549,915  |  |
| 13       | 2030          | -1,973,858                           | \$52,762,892      | \$35,928,962               | \$21,894,724  |  |
| 14       | 2031          | -2,047,787                           | \$54,739,055      | \$36,188,964               | \$21,228,749  |  |
| 15       | 2032          | -2,121,716                           | \$56,715,218      | \$36,403,340               | \$20,556,205  |  |
| 16       | 2033          | -2,195,645                           | \$58,691,381      | \$36,574,528               | \$19,880,801  |  |
| 17       | 2034          | -2,269,573                           | \$60,667,543      | \$36,704,862               | \$19,205,791  |  |
| 18       | 2035          | -2,343,502                           | \$62,643,706      | \$36,796,575               | \$18,534,012  |  |
| 19       | 2036          | -2,417,431                           | \$64,619,869      | \$36,851,809               | \$17,867,932  |  |
| 20       | 2037          | -2,491,360                           | \$66,596,032      | \$36,872,608               | \$17,209,680  |  |
| 21       | 2038          | -2,565,289                           | \$68,572,195      | \$36,860,934               | \$16,561,083  |  |
| 22       | 2039          | -2,639,218                           | \$70,548,358      | \$36,818,659               | \$15,923,693  |  |
| 23       | 2040          | -2,713,147                           | \$72,524,521      | \$36,747,576               | \$15,298,822  |  |
| 24       | 2041          | -2,713,147                           | \$72,524,521      | \$35,677,259               | \$14,297,964  |  |
| 25       | 2042          | -2,713,147                           | \$72,524,521      | \$34,638,115               | \$13,362,583  |  |
| 26       | 2043          | -2,713,147                           | \$72,524,521      | \$33,629,238               | \$12,488,396  |  |
| 27       | 2044          | -2,713,147                           | \$72,524,521      | \$32,649,746               | \$11,671,398  |  |
| 28       | 2045          | -2,713,147                           | \$72,524,521      | \$31,698,782               | \$10,907,848  |  |
| 29       | 2046          | -2,713,147                           | \$72,524,521      | \$30,775,517               | \$10,194,251  |  |
| 30       | 2047          | -2,713,147                           | \$72,524,521      | \$29,879,142               | \$9,527,337   |  |
| 31       | 2048          | -2,713,147                           | \$72,524,521      | \$29,008,876               | \$8,904,054   |  |
| 32       | 2049          | -2,713,147                           | \$72,524,521      | \$28,163,957               | \$8,321,545   |  |
| 33       | 2050          | -2,713,147                           | \$72,524,521      | \$27,343,648               | \$7,777,145   |  |
| Totals = |               | -\$66,039,416                        | \$1,765,287,249   | \$987,916,281              | \$508,281,464 |  |

## 3.3 Vehicle Operating Cost Savings

The reduction in vehicle delay in the build scenario is also expected to generate a decline in Vehicle Operating Costs (VOC). This is made possible by a decrease in the time vehicle engines need to be idle in congestion, which leads to a decrease in fuel use. The following formula was used in order to capture such savings for each year between 2022 and 2050:

$$VOCS_{VT} = \Delta VHD_{VT} * IdleCons_{VT} * FuelCost_{VT}$$



Where  $VT = \{Auto, Truck\}, VOCS$  is Vehicle Operating Cost Savings, VHD is Vehicle Hours of Delay, IdleCons is a measured in gallons of fuel consumed per hour of engine idling for an average auto and truck (as provided by the U.S. Office of Energy & Renewable Energy<sup>3</sup>), and FuelCost is the forecasted price of gas and diesel in 2015 \$ (as provided by the U.S. Energy Information Administration, EIA). The monetized results are shown in Table 5:

<sup>&</sup>lt;sup>3</sup> Average idling consumption for vehicle with load and with no load, for average auto and truck size. Data made available by the Office of Energy & Renewable Energy available at: http://energy.gov/eere/vehicles/fact-861-february-23-2015-idle-fuel-consumption-selected-gasoline-and-diesel-vehicles.



|          |          | Idling Cost Savir | ngs (\$ 2015) |               | NPV of Vehicle Idling Savings |              |  |
|----------|----------|-------------------|---------------|---------------|-------------------------------|--------------|--|
| Year     | Calendar | endar             |               |               | 3%                            | 7%           |  |
| Tear     | Year     | Auto              | Truck         | Total         | NPV =                         | NPV =        |  |
|          |          |                   |               |               | [J/(1+3%)^A]                  | [J/(1+7%)^A] |  |
| 5        | 2022     | \$1,255,995       | \$488,554     | \$1,744,549   | \$1,504,864                   | \$1,243,840  |  |
| 6        | 2023     | \$1,344,407       | \$523,094     | \$1,867,500   | \$1,564,002                   | \$1,244,394  |  |
| 7        | 2024     | \$1,425,546       | \$557,951     | \$1,983,496   | \$1,612,764                   | \$1,235,222  |  |
| 8        | 2025     | \$1,512,794       | \$595,715     | \$2,108,508   | \$1,664,476                   | \$1,227,171  |  |
| 9        | 2026     | \$1,615,263       | \$636,401     | \$2,251,663   | \$1,725,713                   | \$1,224,756  |  |
| 10       | 2027     | \$1,713,173       | \$675,945     | \$2,389,117   | \$1,777,728                   | \$1,214,506  |  |
| 11       | 2028     | \$1,804,514       | \$713,764     | \$2,518,278   | \$1,819,258                   | \$1,196,416  |  |
| 12       | 2029     | \$1,905,810       | \$756,276     | \$2,662,086   | \$1,867,134                   | \$1,181,998  |  |
| 13       | 2030     | \$1,999,632       | \$795,281     | \$2,794,913   | \$1,903,200                   | \$1,159,790  |  |
| 14       | 2031     | \$2,112,077       | \$841,924     | \$2,954,001   | \$1,952,943                   | \$1,145,612  |  |
| 15       | 2032     | \$2,232,859       | \$891,304     | \$3,124,162   | \$2,005,281                   | \$1,132,340  |  |
| 16       | 2033     | \$2,357,722       | \$941,875     | \$3,299,597   | \$2,056,200                   | \$1,117,688  |  |
| 17       | 2034     | \$2,482,823       | \$994,008     | \$3,476,831   | \$2,103,540                   | \$1,100,676  |  |
| 18       | 2035     | \$2,583,516       | \$1,042,703   | \$3,626,219   | \$2,130,022                   | \$1,072,867  |  |
| 19       | 2036     | \$2,717,692       | \$1,098,731   | \$3,816,423   | \$2,176,453                   | \$1,055,273  |  |
| 20       | 2037     | \$2,831,090       | \$1,145,888   | \$3,976,978   | \$2,201,956                   | \$1,027,727  |  |
| 21       | 2038     | \$2,977,961       | \$1,204,990   | \$4,182,950   | \$2,248,542                   | \$1,010,237  |  |
| 22       | 2039     | \$3,117,458       | \$1,261,410   | \$4,378,867   | \$2,285,298                   | \$988,368    |  |
| 23       | 2040     | \$3,277,163       | \$1,327,266   | \$4,604,428   | \$2,333,026                   | \$971,290    |  |
| 24       | 2041     | \$3,277,163       | \$1,327,266   | \$4,604,428   | \$2,265,074                   | \$907,747    |  |
| 25       | 2042     | \$3,277,163       | \$1,327,266   | \$4,604,428   | \$2,199,101                   | \$848,362    |  |
| 26       | 2043     | \$3,277,163       | \$1,327,266   | \$4,604,428   | \$2,135,049                   | \$792,862    |  |
| 27       | 2044     | \$3,277,163       | \$1,327,266   | \$4,604,428   | \$2,072,863                   | \$740,992    |  |
| 28       | 2045     | \$3,277,163       | \$1,327,266   | \$4,604,428   | \$2,012,489                   | \$692,516    |  |
| 29       | 2046     | \$3,277,163       | \$1,327,266   | \$4,604,428   | \$1,953,872                   | \$647,211    |  |
| 30       | 2047     | \$3,277,163       | \$1,327,266   | \$4,604,428   | \$1,896,963                   | \$604,870    |  |
| 31       | 2048     | \$3,277,163       | \$1,327,266   | \$4,604,428   | \$1,841,712                   | \$565,300    |  |
| 32       | 2049     | \$3,277,163       | \$1,327,266   | \$4,604,428   | \$1,788,070                   | \$528,317    |  |
| 33       | 2050     | \$3,277,163       | \$1,327,266   | \$4,604,428   | \$1,735,990                   | \$493,754    |  |
| Totals = |          | \$74,039,119      | \$29,765,735  | \$103,804,853 | \$56,833,580                  | \$28,372,103 |  |

Table 5: Vehicle Operating Cost (VOC) Savings

## 3.4 Health Benefits from Induced Walk Trips

The Access I-95 project will provide pedestrian-friendly facilities, improving connectivity in Port Covington for internal walking trips and external walking trips to and from adjacent communities in South Baltimore. Currently, there are no pedestrian facilities in the study area, and the project seeks to enhance the walking accessibility in the redevelopment area. This active mode of transportation is known to improve public fitness and health, which generates benefits to walkers and as an externality to the healthcare system.



In order to calculate such benefits, the following equation was estimated for each year between 2022 and 2050:

$$HB = \frac{\%Walking}{\%Auto} * AutoTrips * WalkDistance * Health$$

Where *HB* represents monetized health benefits,  $\frac{\% Walking}{\% Auto}$  is the ratio between the walking mode share to the auto mode share in Baltimore City (roughly 10%, according the 2015 ACS), *AutoTrips* is the estimated number of annual auto trips to/from the project site, *WalkDistance* is the average distance of a walking trip [estimated at 0.3 miles, according to Litman (2016)<sup>4</sup>], and *Health* refers to the estimated dollar value (roughly \$0.50 in 2015 dollars) of health benefits from an additional mile walked [also in Litman (2016)].

The number of annual auto trips from/to the project site were calculated based on the PM peak hour traffic volumes in two main intersections in Port Covington (Hanover Street southbound and northbound at McComas Street and McComas Street westbound and eastbound at Key Highway). A planning analysis hour factor (or k-factor) of 0.1 was used to estimate average daily trips, excluding truck traffic. The same annualization factors as indicated previously for commuting and leisure trips were employed to calculate total annual auto trips. Trips were calculated for existing traffic volume data (2015) and for future volumes (2040) using information from the TDM. Such trip estimation was necessary since the number of aggregate total trips estimated by the TDM, as a source for the calculation of other benefits, includes trips in links that were not directly associated with trips within the project site, and this could overestimate the magnitude of the walking benefits.

The benefit estimation assumes that the walk mode share in the Port Covington site, with a significantly enhanced pedestrian accessibility, will increase from zero (since pedestrian facilities are almost non-existent in current conditions) to the levels observed on average in the city of Baltimore (2015 ACS data). The results are shown in Table 6.

<sup>&</sup>lt;sup>4</sup> Litman (2016) Evaluating Transport Benefits and Costs: Guide to Valuing Walking and Cycling Improvements and Encouragment Programs.



|          | Calendar | Monetary Value of<br>Health Benefits (in<br>2015\$) | NPV of Auto Trip Diversion Benefits |                       |  |
|----------|----------|-----------------------------------------------------|-------------------------------------|-----------------------|--|
| Year     | Year     | All Trips                                           | 3%                                  | 7%                    |  |
|          |          | Total                                               | NPV =<br>[J/(1+3%)^A]               | NPV =<br>[J/(1+7%)^A] |  |
| 5        | 2022     | \$379,394                                           | \$327,269                           | \$270,503             |  |
| 6        | 2023     | \$390,359                                           | \$326,919                           | \$260,113             |  |
| 7        | 2024     | \$401,324                                           | \$326,313                           | \$249,924             |  |
| 8        | 2025     | \$412,289                                           | \$325,465                           | \$239,956             |  |
| 9        | 2026     | \$423,254                                           | \$324,389                           | \$230,222             |  |
| 10       | 2027     | \$434,219                                           | \$323,100                           | \$220,735             |  |
| 11       | 2028     | \$445,184                                           | \$321,610                           | \$211,504             |  |
| 12       | 2029     | \$456,149                                           | \$319,934                           | \$202,536             |  |
| 13       | 2030     | \$467,114                                           | \$318,082                           | \$193,836             |  |
| 14       | 2031     | \$478,079                                           | \$316,066                           | \$185,407             |  |
| 15       | 2032     | \$489,044                                           | \$313,899                           | \$177,252             |  |
| 16       | 2033     | \$500,009                                           | \$311,589                           | \$169,370             |  |
| 17       | 2034     | \$510,974                                           | \$309,148                           | \$161,761             |  |
| 18       | 2035     | \$521,939                                           | \$306,584                           | \$154,423             |  |
| 19       | 2036     | \$532,904                                           | \$303,908                           | \$147,352             |  |
| 20       | 2037     | \$543,869                                           | \$301,127                           | \$140,546             |  |
| 21       | 2038     | \$554,834                                           | \$298,250                           | \$134,000             |  |
| 22       | 2039     | \$565,799                                           | \$295,286                           | \$127,708             |  |
| 23       | 2040     | \$576,764                                           | \$292,241                           | \$121,667             |  |
| 24       | 2041     | \$576,764                                           | \$283,730                           | \$113,707             |  |
| 25       | 2042     | \$576,764                                           | \$275,466                           | \$106,268             |  |
| 26       | 2043     | \$576,764                                           | \$267,442                           | \$99,316              |  |
| 27       | 2044     | \$576,764                                           | \$259,653                           | \$92,819              |  |
| 28       | 2045     | \$576,764                                           | \$252,090                           | \$86,747              |  |
| 29       | 2046     | \$576,764                                           | \$244,748                           | \$81,072              |  |
| 30       | 2047     | \$576,764                                           | \$237,619                           | \$75,768              |  |
| 31       | 2048     | \$576,764                                           | \$230,698                           | \$70,811              |  |
| 32       | 2049     | \$576,764                                           | \$223,979                           | \$66,179              |  |
| 33       | 2050     | \$576,764                                           | \$217,455                           | \$61,849              |  |
| Totals = |          | \$14,851,134                                        | \$8,454,056                         | \$4,453,348           |  |

## Table 6: Health Benefits Associated with Increase in Walk Mode Share

## 3.5 Benefits from Avoided Auto Trips as a Result of Induced Walk Trips

Benefits of transportation modes other than auto often include the externalities of avoided auto trips. In other words, additional walking trips divert trips from motorized vehicles. Therefore, Litman (2016) shows that the benefits of reduced vehicle travel include vehicle operating cost savings (user savings from reduced vehicle ownership and use), congestion reduction (reduced traffic congestion from automobile travel on congested roadways), avoided



emissions (benefits from reduced energy consumption), and roadway cost savings (reduced maintenance and operating costs).

In order to monetize the above described benefits, Vehicle Miles Diverted ( $VM_Div$ ) were calculated using the formula below, in which  $\overline{AVO}$  is the Average Vehicle Occupancy for commuting trips and leisure trips overall. The remaining variables in the equation are the same as described in the formula used to calculate health benefits in 3.3.

$$VM_Div = \frac{\%Walking}{\%Auto} * AutoTrips * WalkDistance / \frac{1}{AVO}$$

Using Vehicle Miles Diverted for each year of the project's life cycle allows us to calculate congestion alleviation. Litman (2016) reports that the marginal congestion cost of VMT imposed on other motorists is on average \$0.20 at the peak hour and \$0.05 at an off-peak hour in an urban area in 2015 dollars, which was used to monetize congestion alleviation benefits from walking trips. In addition, a similar approach to savings of Vehicle Operating Costs as section 3.3 was followed. In order to calculate the avoided damage of additional miles on road surface, the marginal pavement cost of auto VMT in 2015 dollars (FHWA, 1997<sup>5</sup>) was used (roughly \$0.001 in 2015 dollars). Finally, in order to estimate the benefits in terms of non-carbon emission avoided, the same methodology as that employed in 3.7 was followed. The benefits of avoided carbon emissions are calculated separately in 3.6. The results are presented in Table 7 below:



<sup>&</sup>lt;sup>5</sup> Source: 1997 Federal Highway Cost Allocation Study, Final Report, Table V-22

| Calendar<br>Year | Monetary<br>Value of<br>Congestion<br>Alleviation<br>(in 2015\$) | Monetary<br>Value of<br>Vehicle<br>Operating<br>Cost Savings<br>(in 2015\$) | Monetary<br>Value of<br>Pavement<br>Mainten.<br>Savings (in<br>2015\$) | Monetary<br>Value of<br>Non-<br>Carbon<br>Emissions<br>Avoided (in<br>2015\$) | Grand Total<br>(in 2015\$) | NPV of Auto Trij      | o Diversion           |
|------------------|------------------------------------------------------------------|-----------------------------------------------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------|-----------------------|-----------------------|
|                  | All Trips                                                        | All Trips                                                                   | All Trips                                                              | All Trips                                                                     | All Trips                  | 3%                    | 7%                    |
|                  | Total                                                            | Total                                                                       | Total                                                                  | Total                                                                         | Total                      | NPV =<br>[J/(1+3%)^A] | NPV =<br>[J/(1+7%)^A] |
| 2022             | \$56,909                                                         | \$484,428                                                                   | \$1,044                                                                | \$8,831                                                                       | \$551,212                  | \$475,481             | \$393,007             |
| 2023             | \$58,554                                                         | \$498,429                                                                   | \$1,075                                                                | \$9,086                                                                       | \$567,143                  | \$474,973             | \$377,911             |
| 2024             | \$60,199                                                         | \$512,429                                                                   | \$1,105                                                                | \$9,341                                                                       | \$583,074                  | \$474,092             | \$363,109             |
| 2025             | \$61,843                                                         | \$526,430                                                                   | \$1,135                                                                | \$9,596                                                                       | \$599,005                  | \$472,860             | \$348,626             |
| 2026             | \$63 <i>,</i> 488                                                | \$540,430                                                                   | \$1,165                                                                | \$9,852                                                                       | \$614,935                  | \$471,297             | \$334,484             |
| 2027             | \$65,133                                                         | \$554,431                                                                   | \$1,195                                                                | \$10,107                                                                      | \$630,866                  | \$469,424             | \$320,700             |
| 2028             | \$66,778                                                         | \$568,432                                                                   | \$1,226                                                                | \$10,651                                                                      | \$647,086                  | \$467,469             | \$307,426             |
| 2029             | \$68,422                                                         | \$582 <i>,</i> 432                                                          | \$1,256                                                                | \$10,913                                                                      | \$663,024                  | \$465,032             | \$294,390             |
| 2030             | \$70,067                                                         | \$596 <i>,</i> 433                                                          | \$1,286                                                                | \$11,176                                                                      | \$678,962                  | \$462,340             | \$281,745             |
| 2031             | \$71,712                                                         | \$610,434                                                                   | \$1,316                                                                | \$11,438                                                                      | \$694,900                  | \$459,410             | \$269,494             |
| 2032             | \$73,357                                                         | \$624,434                                                                   | \$1,346                                                                | \$11,700                                                                      | \$710,837                  | \$456,259             | \$257,640             |
| 2033             | \$75,001                                                         | \$638,435                                                                   | \$1,376                                                                | \$11,963                                                                      | \$726,775                  | \$452,902             | \$246,184             |
| 2034             | \$76,646                                                         | \$652 <i>,</i> 435                                                          | \$1,407                                                                | \$12,225                                                                      | \$742,713                  | \$449,354             | \$235,124             |
| 2035             | \$78,291                                                         | \$666,436                                                                   | \$1,437                                                                | \$13,631                                                                      | \$759,794                  | \$446,299             | \$224,796             |
| 2036             | \$79,936                                                         | \$680,437                                                                   | \$1,467                                                                | \$13,917                                                                      | \$775,756                  | \$442,403             | \$214,503             |
| 2037             | \$81,580                                                         | \$694,437                                                                   | \$1,497                                                                | \$14,203                                                                      | \$791,718                  | \$438,355             | \$204,595             |
| 2038             | \$83,225                                                         | \$708,438                                                                   | \$1,527                                                                | \$14,490                                                                      | \$807,680                  | \$434,168             | \$195,065             |
| 2039             | \$84,870                                                         | \$722,438                                                                   | \$1,558                                                                | \$14,776                                                                      | \$823,642                  | \$429,853             | \$185,907             |
| 2040             | \$86,515                                                         | \$736,439                                                                   | \$1,588                                                                | \$15,063                                                                      | \$839,604                  | \$425,420             | \$177,112             |
| 2041             | \$86,515                                                         | \$736,439                                                                   | \$1,588                                                                | \$15,063                                                                      | \$839,604                  | \$413,029             | \$165,525             |
| 2042             | \$86,515                                                         | \$736,439                                                                   | \$1,588                                                                | \$15,063                                                                      | \$839,604                  | \$400,999             | \$154,696             |
| 2043             | \$86,515                                                         | \$736,439                                                                   | \$1,588                                                                | \$18,113                                                                      | \$842,655                  | \$390,734             | \$145,101             |
| 2044             | \$86,515                                                         | \$736,439                                                                   | \$1,588                                                                | \$18,113                                                                      | \$842,655                  | \$379,354             | \$135,609             |
| 2045             | \$86,515                                                         | \$736,439                                                                   | \$1,588                                                                | \$18,113                                                                      | \$842,655                  | \$368,305             | \$126,737             |
| 2046             | \$86,515                                                         | \$736,439                                                                   | \$1,588                                                                | \$18,113                                                                      | \$842,655                  | \$357,577             | \$118,446             |
| 2047             | \$86,515                                                         | \$736,439                                                                   | \$1,588                                                                | \$18,113                                                                      | \$842,655                  | \$347,163             | \$110,697             |
| 2048             | \$86,515                                                         | \$736,439                                                                   | \$1,588                                                                | \$18,113                                                                      | \$842,655                  | \$337,051             | \$103,455             |
| 2049             | \$86,515                                                         | \$736,439                                                                   | \$1,588                                                                | \$18,113                                                                      | \$842,655                  | \$327,234             | \$96,687              |
| 2050             | \$86,515                                                         | \$736,439                                                                   | \$1,588                                                                | \$18,113                                                                      | \$842,655                  | \$317,703             | \$90,362              |
| Totals =         | \$2,227,670                                                      | \$18,962,628                                                                | \$40,882                                                               | \$397,990                                                                     | \$21,629,170               | \$12,306,540          | \$6,479,134           |

# Table 7: Benefits of Avoided Auto Trips as a Result of Increase in Walk Mode Share



## 3.6 Avoided CO<sub>2</sub> emissions

The benefits from avoided CO<sub>2</sub> emissions can be calculated from two sources for this project. First, an expected outcome is that the reduction in vehicle delays will lead to a decline in vehicle idling and hence lower use of motor fuel and lower carbon emissions. Second, diverted motorized trips to walking also allows a reduction in CO<sub>2</sub> emissions. The following equation was used to calculate the first source of avoided social costs of carbon for years between 2022 and 2050:

$$CO_{2_{VT}}^{1} = \Delta VHD_{VT} * IdleCons_{VT} * CO_{2}ER_{TT} * SCC$$

Where  $CO_{2VT}^1$  is equal to the monetized value of carbon emission avoided from the first source (reduced vehicle hours of delay),  $\Delta VHD$  is the change in vehicle hours of delay, IdleCons is the rate of fuel consumption in gallons per hour of idling engine (as explained in 3.3),  $CO_2ER$  is equal to the  $CO_2$  emission rate per gallon of fuel (gasoline for autos or diesel for trucks) in metric tons, and SCC is the social cost of carbon per metric ton, for which the recommended monetized value in the FASTLANE Benefit-Cost Analysis guidance was used (with values that change in time up to 2050).

The second source of avoided carbon emission is trip diversion, which can be calculated using the following equation for years between 2022 and 2050:

$$CO_{2_{VT}}^2 = VM_Div * CO_2ER_{Speed} * SCC$$

Where  $CO_{2_{VT}}^2$  is equal to the monetized value of carbon emission avoided from the second source (motorized trip diversion),  $VM_Div$  is the annual number of vehicle miles diverted,  $CO_2ER_{speed}$  is equal to the CO<sub>2</sub> emission rate per gallon of gas for a given speed (system average for each year, as estimated in the TDM) in metric tons (with data from MOVES 2014<sup>6</sup>), and *SCC*, as described above, is the social cost of carbon.

Table 8 summarizes the results and it is presented only with a 3% discount rate per FASTLANE Benefit-Cost Analysis guidance.



<sup>&</sup>lt;sup>6</sup> https://www.epa.gov/air-pollution-transportation.

| Year     | Calendar<br>Year | CO2EmissionsAvoidedCost-ReductioninVehicleDelay(3% SCC)(in2015\$) | CO2 Emissions Avoided<br>Cost –Increased Walk<br>Mode Share (3% SCC) (in<br>2015\$) | NPV of SCC<br>Emissions Avoided |
|----------|------------------|-------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------|
|          |                  | All Trips                                                         | All Trips                                                                           | 3%                              |
|          |                  | Total                                                             | Total                                                                               | NPV =<br>[J/(1+3%)^A]           |
| 5        | 2022             | \$71,763                                                          | \$14,767                                                                            | \$74,641                        |
| 6        | 2023             | \$77,139                                                          | \$15,504                                                                            | \$77,587                        |
| 7        | 2024             | \$82,672                                                          | \$16,258                                                                            | \$80,439                        |
| 8        | 2025             | \$88,362                                                          | \$17,030                                                                            | \$83,197                        |
| 9        | 2026             | \$94,208                                                          | \$17,819                                                                            | \$85,859                        |
| 10       | 2027             | \$100,210                                                         | \$18,625                                                                            | \$88,425                        |
| 11       | 2028             | \$106,369                                                         | \$20,867                                                                            | \$91,918                        |
| 12       | 2029             | \$110,672                                                         | \$21,381                                                                            | \$92,619                        |
| 13       | 2030             | \$119,156                                                         | \$22,691                                                                            | \$96,591                        |
| 14       | 2031             | \$125,784                                                         | \$23,631                                                                            | \$98,781                        |
| 15       | 2032             | \$132,569                                                         | \$24,590                                                                            | \$100,874                       |
| 16       | 2033             | \$139,510                                                         | \$25,567                                                                            | \$102,871                       |
| 17       | 2034             | \$146,608                                                         | \$26,564                                                                            | \$104,771                       |
| 18       | 2035             | \$153,862                                                         | \$30,811                                                                            | \$108,476                       |
| 19       | 2036             | \$161,272                                                         | \$31,966                                                                            | \$110,201                       |
| 20       | 2037             | \$168,839                                                         | \$33,142                                                                            | \$111,832                       |
| 21       | 2038             | \$176,563                                                         | \$34,338                                                                            | \$113,370                       |
| 22       | 2039             | \$187,238                                                         | \$36,094                                                                            | \$116,555                       |
| 23       | 2040             | \$195,352                                                         | \$37,343                                                                            | \$117,905                       |
| 24       | 2041             | \$198,225                                                         | \$37,892                                                                            | \$116,154                       |
| 25       | 2042             | \$198,225                                                         | \$37,892                                                                            | \$112,771                       |
| 26       | 2043             | \$201,098                                                         | \$46,093                                                                            | \$114,621                       |
| 27       | 2044             | \$203,971                                                         | \$46,752                                                                            | \$112,873                       |
| 28       | 2045             | \$206,844                                                         | \$47,410                                                                            | \$111,128                       |
| 29       | 2046             | \$209,716                                                         | \$48,069                                                                            | \$109,390                       |
| 30       | 2047             | \$215,462                                                         | \$49,386                                                                            | \$109,114                       |
| 31       | 2048             | \$218,335                                                         | \$50,044                                                                            | \$107,348                       |
| 32       | 2049             | \$221,208                                                         | \$50,703                                                                            | \$105,593                       |
| 33       | 2050             | \$224,081                                                         | \$51,361                                                                            | \$103,849                       |
| Totals = |                  | \$71,763                                                          | \$14,767                                                                            | \$2,959,753                     |

## Table 8: Avoided Social Cost of CO<sub>2</sub> Emissions

# 3.7 Avoided Non-CO<sub>2</sub> emissions

Non-Carbon vehicle emissions that were considered in this cost-effectiveness analysis include: Volatile Organic Compounds (VOC), Particular Matter (PM) and Nitrogen Oxides (NOX). The project is expected to lower emissions in the Port Covington site due to the decline in the use of motor fuel as a result of a reduction in vehicle idling caused



by the decrease in vehicle delay. The emission savings can be calculated with the following equation for years between 2022 and 2050:

$$ES_{ET,VT} = \Delta VHD_{VT} * IdleCons_{VT} * ER_{ET,VT} * EC$$

Where  $ES_{ET,VT}$  is the total emission savings by type of emission and type of vehicle,  $\Delta VHD$  is the change in vehicle hours of delay,  $IdleCons_{VT}$  is the rate of fuel consumption in gallons per hour of idling engine (as explained in 3.3), ER is the emission rate in short tons per gallon of fuel at engine idle made available by the EPA<sup>7</sup>, and EC is the emission cost per short ton, as indicated in the FASTLANE Benefit-Cost Analysis guidance. Table 9 describes the monetized benefits by emission type.

<sup>&</sup>lt;sup>7</sup> Source: U.S. Environmental Protection Agency (EPA), Office of Transportation and Air Quality, Idling Vehicle Emissions for Passenger Cars, Light-Duty Trucks, and Heavy-Duty Trucks, page 4. (EPA420-F-08-025, October 2008)



Emissions Emissions Emissions Grand NPV of Non-Carbon Emission Avoided Avoided Avoided Total **Cost Saved/Wasted** Calendar Cost Cost Cost Year Year 7% All Trips All Trips All Trips All Trips 3% NPV NPV Total Total Total Total [J/(1+3%)^A] [J/(1+7%)^A] 2022 \$7,783 \$76,566 \$62,632 \$146,982 \$126,788 \$104,796 5 2023 \$8,199 \$80,649 \$65,962 6 \$154,811 \$129,652 \$103,157 7 2024 \$84,732 \$69,292 \$132,241 \$8,615 \$162,640 \$101,284 8 2025 \$88,815 \$72,622 \$170,469 \$134,570 \$99,214 \$9,032 9 2026 \$9,448 \$92,898 \$75,952 \$178,298 \$136,651 \$96,982 2027 \$9,864 \$94,618 10 \$96,981 \$79,282 \$186,127 \$138,496 11 2028 \$101,064 \$82,612 \$193,956 \$140,118 \$92,147 \$10,280 2029 \$10,696 \$105,147 \$85,942 \$201,785 \$141,528 \$89,595 12 2030 13 \$11,112 \$109,230 \$89,272 \$209,614 \$142,737 \$86,982 14 2031 \$143,756 \$11,528 \$113,313 \$92,602 \$217,443 \$84,328 15 2032 \$11,945 \$117,396 \$95,932 \$225,272 \$144,594 \$81,649 16 2033 \$12,361 \$121,479 \$99,262 \$233,101 \$145,261 \$78,960 17 2034 \$125,561 \$145,767 \$76,272 \$12,777 \$102,592 \$240,931 18 2035 \$129,644 \$105,922 \$146,120 \$73,599 \$13,193 \$248,760 19 2036 \$133,727 \$109,252 \$256,589 \$146,329 \$70,949 \$13,609 20 2037 \$14,025 \$137,810 \$112,582 \$264,418 \$146,402 \$68,331 \$65,751 2038 \$141,893 \$272,247 21 \$14,441 \$115,912 \$146,346 22 2039 \$14,858 \$145,976 \$119,242 \$280,076 \$146,169 \$63,217 \$15,274 23 2040 \$150,059 \$122,572 \$287,905 \$145,879 \$60,733 24 2041 \$150,059 \$15,274 \$122,572 \$287,905 \$141,630 \$56,759 25 2042 \$150,059 \$122,572 \$287,905 \$137,505 \$53,046 \$15,274 26 2043 \$15,274 \$150,059 \$122,572 \$287,905 \$133,500 \$49,576 27 2044 \$15,274 \$150,059 \$122,572 \$287,905 \$129,612 \$46,333 28 2045 \$150,059 \$122,572 \$125,837 \$15,274 \$287,905 \$43,302 29 2046 \$150,059 \$122,572 \$122,171 \$40,469 \$15,274 \$287,905 2047 \$15,274 \$150,059 \$122,572 \$287,905 \$118,613 \$37,821 30 \$35*,*347 31 2048 \$15,274 \$150,059 \$122,572 \$287,905 \$115,158 32 2049 \$15,274 \$150,059 \$122,572 \$287,905 \$111,804 \$33,035 33 2050 \$15,274 \$150.059 \$122.572 \$287,905 \$108,548 \$30.873

PM

 Table 9: Avoided Non-Carbon Emission Costs

voc

NOx

# 3.8 Safety Benefits of Rail Relocation

One of the project components involves rail relocation, which is expected to eliminate two existing at-grade crossing and avoid the need for nine additional ones. In order to estimate the safety benefits associated with this rail relocation, the methodology laid out by FHWA (2007)<sup>8</sup> was used to calculate safety benefits (also employed by Benefit-Cost analysis tool GradeDEC). The model relies on specific characteristics of the rail crossings, such as:

\$2,985,166

\$7,010,473

\$3,923,781

\$2,019,125

\$371,777

\$3,653,531



Totals =

<sup>&</sup>lt;sup>8</sup> http://safety.fhwa.dot.gov/xings/com\_roaduser/07010/sec03.htm

average daily traffic, average trains daily at the crossing, maximum timetable speed, and through trains per day. Since there are only 2 train movements per day during late night, the safety benefits estimated are relatively small compared to other benefits. Table 10 shows the estimated rail relocation benefits.

|          | Colordan         | Monetary Value of<br>Rail Relocation (in<br>2015\$) | NPV of Rail Relocation Benefits |                       |  |
|----------|------------------|-----------------------------------------------------|---------------------------------|-----------------------|--|
| Year     | Calendar<br>Year | All Trips                                           | 3%                              | 7%                    |  |
|          |                  | Total                                               | NPV =<br>[J/(1+3%)^A]           | NPV =<br>[J/(1+7%)^A] |  |
| 5        | 2022             | \$11,138                                            | \$9,607                         | \$7,941               |  |
| 6        | 2023             | \$11,740                                            | \$9,832                         | \$7,823               |  |
| 7        | 2024             | \$11,927                                            | \$9,698                         | \$7,428               |  |
| 8        | 2025             | \$12,184                                            | \$9,618                         | \$7,091               |  |
| 9        | 2026             | \$12,611                                            | \$9,665                         | \$6,859               |  |
| 10       | 2027             | \$12,891                                            | \$9,592                         | \$6,553               |  |
| 11       | 2028             | \$11,803                                            | \$8,527                         | \$5,608               |  |
| 12       | 2029             | \$13,268                                            | \$9,306                         | \$5,891               |  |
| 13       | 2030             | \$13,622                                            | \$9,276                         | \$5,653               |  |
| 14       | 2031             | \$13,755                                            | \$9,093                         | \$5,334               |  |
| 15       | 2032             | \$13,951                                            | \$8,954                         | \$5,056               |  |
| 16       | 2033             | \$13,951                                            | \$8,694                         | \$4,726               |  |
| 17       | 2034             | \$14,310                                            | \$8,658                         | \$4,530               |  |
| 18       | 2035             | \$14,310                                            | \$8,406                         | \$4,234               |  |
| 19       | 2036             | \$14,450                                            | \$8,241                         | \$3,996               |  |
| 20       | 2037             | \$14,310                                            | \$7,923                         | \$3,698               |  |
| 21       | 2038             | \$14,759                                            | \$7,933                         | \$3,564               |  |
| 22       | 2039             | \$15,113                                            | \$7,887                         | \$3,411               |  |
| 23       | 2040             | \$15,113                                            | \$7,658                         | \$3,188               |  |
| 24       | 2041             | \$15,113                                            | \$7,435                         | \$2,979               |  |
| 25       | 2042             | \$15,113                                            | \$7,218                         | \$2,785               |  |
| 26       | 2043             | \$15,113                                            | \$7,008                         | \$2,602               |  |
| 27       | 2044             | \$15,113                                            | \$6,804                         | \$2,432               |  |
| 28       | 2045             | \$15,113                                            | \$6,605                         | \$2,273               |  |
| 29       | 2046             | \$15,113                                            | \$6,413                         | \$2,124               |  |
| 30       | 2047             | \$15,113                                            | \$6,226                         | \$1,985               |  |
| 31       | 2048             | \$15,113                                            | \$6,045                         | \$1,855               |  |
| 32       | 2049             | \$15,113                                            | \$5,869                         | \$1,734               |  |
| 33       | 2050             | \$15,113                                            | \$5,698                         | \$1,621               |  |
| Totals = |                  | \$406,334                                           | \$233,890                       | \$124,975             |  |

## **Table 10: Rail Relocation Safety Benefits**

## 3.9 Avoided Maintenance Costs

The Access I-95 project will also have an impact in terms of avoided scheduled maintenance costs for the I-95 ramps to/from McComas Street. The scheduled maintenance of such ramps is shown in Table 11. The 407additional



maintenance cost of the new facilities is estimated as part of the operating and maintenance costs of the projects described in 3.10.

|          | Calendar | Monetary Value of<br>Avoided Maintenance (in<br>2015\$) | NPV of Avoided Maintenance Costs |                       |  |
|----------|----------|---------------------------------------------------------|----------------------------------|-----------------------|--|
| Year Y   | Year     | All Trips                                               | 3%                               | 7%                    |  |
|          |          | Total                                                   | NPV =<br>[J/(1+3%)^A]            | NPV =<br>[J/(1+7%)^A] |  |
| 0        | 2017     | \$243,499                                               | \$243,499                        | \$243,499             |  |
| 15       | 2032     | \$243,499                                               | \$156,293                        | \$88,255              |  |
| 30       | 2047     | \$243,499                                               | \$100,318                        | \$31,988              |  |
| Totals = |          | \$730,497                                               | \$500,110                        | \$363,742             |  |

# **Table 11: Avoided Maintenance Costs**

# 3.10<u>Costs</u>

The total capital costs of the project amount to \$183.3 million, and ramp maintenance is expected to happen in year 2039 with a cost of \$243,000. The discounted project costs are \$149.9 million using a 7% discount rate, and \$166 million using a 3% discount rate, as described in Table 12.

|          | r   · · · · | Capital Costs (in | O&M Costs (in         | NPV of Total Costs    |               |
|----------|-------------|-------------------|-----------------------|-----------------------|---------------|
| Year     |             |                   |                       | 3%                    | 7%            |
|          |             | 2015\$)           | NPV =<br>[J/(1+3%)^A] | NPV =<br>[J/(1+7%)^A] |               |
| 0        | 2017        | \$1,691,333       |                       | \$1,691,333           | \$1,691,333   |
| 1        | 2018        | \$1,691,333       |                       | \$1,642,071           | \$1,580,685   |
| 2        | 2019        | \$8,179,667       |                       | \$7,710,120           | \$7,144,438   |
| 3        | 2020        | \$91,318,567      |                       | \$83,569,425          | \$74,543,152  |
| 4        | 2021        | \$71,786,175      |                       | \$63,781,086          | \$54,765,329  |
| 5        | 2022        | \$8,621,925       |                       | \$7,437,348           | \$6,147,313   |
| 22       | 2039        |                   | \$243,499             | \$127,080             | \$54,961      |
| Totals = |             | \$183,289,000     | \$243,499             | \$165,958,465         | \$145,927,212 |

# Table 12: Project Life Cycle Cost Analysis

# 4. Summary of Benefits

The aggregation of all benefits expected to be generated by the Access I-95 project, as well as their costs are shown in Table 13 below, with discount rates of 7%, 3%, and undiscounted. All metrics show large benefits, with a benefit-cost ratio of 3.79 and a net present value of \$407 million using a disco.1unt rate of 7%. The biggest share of benefits is driven by travel time savings, which are made possible by the very high delays in the project site, as predicted by the travel demand model in the 2040 no-build scenario.



|                                         | Monetary Value  |                                |               |  |  |
|-----------------------------------------|-----------------|--------------------------------|---------------|--|--|
| Metrics                                 | Undiscounted    | discounted Discount Rate<br>3% |               |  |  |
| Avoided Maintenance Costs               | \$730,497       | \$500,110                      | \$363,742     |  |  |
| Travel Time Savings                     | \$1,765,287,249 | \$987,916,281                  | \$508,281,464 |  |  |
| Vehicle Operating Cost Saving           | \$29,765,735    | \$56,833,580                   | \$28,372,103  |  |  |
| Health Benefits from Walking Trips      | \$14,851,134    | \$8,454,056                    | \$4,453,348   |  |  |
| Avoided Auto Trips from Walking Trips   | \$21,629,170    | \$12,306,540                   | \$6,479,134   |  |  |
| Avoided Social Cost of Carbon Emissions | \$4,535,311     | \$2,959,753                    | \$2,959,753   |  |  |
| Avoided Non-Carbon Emission Costs       | \$7,010,473     | \$3,923,781                    | \$2,019,125   |  |  |
| Rail Relocation (Avoided Collisions)    | \$406,334       | \$233,890                      | \$124,975     |  |  |
| Total Benefits =                        | \$1,844,215,903 | \$1,073,127,991                | \$553,053,646 |  |  |
| Capital Costs                           | \$183,289,000   | \$165,831,384                  | \$145,872,251 |  |  |
| O&M Costs                               | \$243,499       | \$127,080                      | \$54,961      |  |  |
| Total Costs =                           | \$183,532,499   | \$165,958,465                  | \$145,927,212 |  |  |
| NET PRESENT VALUE =                     |                 | \$907,169,526                  | \$407,126,434 |  |  |
| BENEFIT-COST RATIO =                    |                 | 6.47                           | 3.79          |  |  |

In addition to the default analysis, four sensitivity analyses (shown in Table 14) were performed by changing key parameters in the model, they all show that regardless of the underlying assumptions, the project continues to have a strong Benefit/Cost Ratio of at least 2.2 (1.3) with a discount rate of 3% (7%). The first change in assumptions alters the horizon year from 2050 to 2040, which leads to Benefit-Cost ratios between of 2.98 and 4.41. The second change involves changing the type of project from moderate to minor, according to the methodology proposed by TIERS (which describes that a moderate impact level generates a 30% delay reduction, while for a minor impact level the delay savings are of 10%). Changing this assumption reduces the magnitude of travel time savings, however, the project remains with positive net present values and with healthy benefit-cost ratios. The third change in assumptions removes all benefits derived from the expected increase in the walk mode share, and the B/C metrics remain almost unchanged with respect to the default value. Finally, the fourth assumption considers that all auto travel is made of leisure trips (and time is valued at a lower cost), and that only business days have road congestion and hence travel delays. With this result, the B/C ratio remains 1.77 and 3.02 with the 7% and 3% discount rates.



# **Table 14: Sensitivity Analysis**

|                                          | Analysis<br>(1) | Analysis (2) | Analysis<br>(3) | Analysis<br>(4) | Analysis<br>(5) |
|------------------------------------------|-----------------|--------------|-----------------|-----------------|-----------------|
| Horizon Year                             | 2050            | 2040         | 2050            | 2050            | 2050            |
| Delay Savings Impact                     | Moderate        | Moderate     | Minor           | Moderate        | Moderate        |
| Walk Mode Shift Allowed                  | Yes             | Yes          | Yes             | No              | Yes             |
| Maintain Travel Assumptions <sup>†</sup> | Yes             | Yes          | Yes             | Yes             | No              |
| B/C Ratio (3% disc.)                     | 6.47            | 4.41         | 2.24            | 6.34            | 3.02            |
| B/C Ratio (7% disc.)                     | 3.79            | 2.98         | 1.32            | 3.72            | 1.77            |
| NPV (3% disc., millions)                 | \$907           | \$565        | \$206           | \$886           | \$336           |
| NPV (7% disc., millions)                 | \$407           | \$289        | \$46            | \$396           | \$113           |

<sup>†</sup> Only weekdays are delayed and all auto travel is valued at leisure travel time.

